Supporting Information

Silicon Nanoparticles Embedded in Porous Carbon Matrix as High-Performance Anode for Lithium-Ion Batteries

Lili Wu, Juan Yang, Xiangyang Zhou,* Manfang Zhang, Yongpeng Ren and Yang Nie

School of Metallurgy and Environment, Central South University, Changsha 410083, China.

*Corresponding Author: *hncsyjy308@163.com*.

Figure S1. Fine XRD patterns of the PCM, bare Si and Si@PCM samples between 10° and 30°

Figure S2. XRD patterns of Si@PCM, Si@C/NaCl and Si@C synthesized by using SiO₂@PCM@NaCl, SiO₂@C/NaCl and SiO₂@C as precursors during magnesiothermic reduction.

Figure S3. SEM images of Si@C/NaCl and Si@C samples.

Figure S4. (a) Nitrogen adsorption-desorption isotherm and (b) pore size distributions of the Si@PCM composite.

Figure S5. Raman spectrum of the Si@PCM composite.

Figure S6. TGA curves of Si@PCM composite measured at a heating rate of 10 °C min⁻¹ in air.

Figure S7. Cycling performance of Si@C/NaCl and Si@C cycled at a current density of 0.5 A g⁻¹.

Table S1. Electrochemical performance of Si/C composite anodes synthesized through

Si anodes	Initial charge	Capacity retention	Rate performance	Reference
	capcacity			
Si@PCM	1215.1 mAh g ⁻¹	1249 mAh g ⁻¹ after	~550 mAh g ⁻¹ at 10 A	This work
		100 cycles at 0.5 A g^{-1}	g-1	
Mesoporous	1233.3 mAh g ⁻¹	1054 mAh g ⁻¹ after 50	270 mAh g ⁻¹ at 2 A g ⁻¹	1
Si/C composite		cycles at 0.1 A g ⁻¹		
Si/nanographite	1702.9 mAh g ⁻¹	975.7 mAh g ⁻¹ after	672.2 mAh g ⁻¹ at 2 A g ⁻	2
sheets		100 cycles at 0.1 A g^{-1}	1	
Si/N-doped	1485 mAh g ⁻¹	1031 mAh g ⁻¹ after	\sim 700 mAh g ⁻¹ at 2 A g ⁻¹	3
carbon/CNS		100 cycles at 0.5 A g^{-1}		
Si@carbon	1071.5 mAh g ⁻¹	546.9 mAh g ⁻¹ after	466.8 mAh g ⁻¹ at 12.8	4
fibres		200 cycles at 1 A g ⁻¹	A g ⁻¹	
Si@SiC@C	1705 mAh g ⁻¹	937 mAh g ⁻¹ after 80	350 mAh g ⁻¹ at 2 A g ⁻¹	5
		cycles at 0.5 A g ⁻¹		
Si/SiO _x @C	1450 mAh g ⁻¹	940 mAh g ⁻¹ after 100	630 mAh g ⁻¹ at 5 A g ⁻¹	6
		cycles at 1 A g ⁻¹		

magnesiothermic reduction in this work and in previous reports.

Reference

1. Y. Tang, S. Yuan, Y. Guo, R. Huang, J. Wang, B. Yang and Y. Dai, Electrochimica Acta, 2016, 200, 182-188.

- Y. Zhang, Y. Jiang, Y. Li, B. Li, Z. Li and C. Niu, *Journal of Power Sources*, 2015, **281**, 425-431.
- Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X.-s. Zheng, F.-F.
 Cao and Y.-G. Guo, *Nano Energy*, 2016, 25, 120-127.
- S. Fang, L. Shen, Z. Tong, H. Zheng, F. Zhang and X. Zhang, *Nanoscale*, 2015, 7, 7409-7414.
- 5. Z. Wen, G. Lu, S. Cui, H. Kim, S. Ci, J. Jiang, P. T. Hurley and J. Chen, *Nanoscale*, 2014, **6**, 342-351.
- W. Li, Z. Li, W. Kang, Y. Tang, Z. Zhang, X. Yang, H. Xue and C.-S. Lee, Journal of Materials Chemistry A, 2014, 2, 12289-12295.