Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Homologous Metal-Free Electrocatalysts Grown on Three-Dimensional Carbon Networks for Overall Water Splitting in Acid and Alkaline Media

Zheng Peng,^{a,b} Siwei Yang,^b Dingsi Jia,^a Peimei Da,^a Peng He,^b Abdullah M. Al-Enizi,^c Guqiao Ding,^{b,*} Xiaoming Xie,^b and Gengfeng Zheng^{a,*}

^aLaboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China. Email: gfzheng@fudan.edu.cn.

^bState Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 20050, China. E-mail: gqding@mail.sim.ac.cn.

^cDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^{*a*,*} Address corespondence to:*gfzheng@fudan.edu.cn*

^{b,*} Address corespondence to: gqding@mail.sim.ac.cn

Figure S1. Photograph of the various electrodes during the synthsize porcedure.

Figure S2. SEM images of (a) cotton and (b) carbon fiber. TEM images of (c) carbon fiber.

Figure S3. (a-b) SEM and (c-d) TEM images of CNTs.

Figure S4. (a-b) SEM image of CNT-CF samples.

Figure S5. (a-b) SEM and (c-d) TEM images of C_3N_4 samples.

Figure S6. SEM images of S-C₃N₄-CNT-CF electrode.

Figure S7. X-ray diffraction (XRD) patterns of C_3N_4 , CNT-CF and C_3N_4 -CNT-CF. Seen in Figure S7, the pure C_3N_4 presents two typical diffraction peaks of (100) and (002), belongs to the PDF No. 87-1526.

Figure S8. XPS survey spectra of (a) C_3N_4 and (b) C_3N_4 -CNT-CF. The whole XPS survey spectrum of these two sample shows the main elements (C and N), with a small amount of adsorbed oxygen.

Figure S9. High-resolution XPS spectra of (a) N 1s , (b) C 1s and (c) S 2p core levels and (d) XPS survey spectrum of S-C₃N₄-CNT-CF.

Figure S10. (a) LSV curves and (b) duration tests at 1.63 V of C_3N_4 -CNT-CF in 0.5 M H_2SO_4 solution at 5 mV s⁻¹.

Figure S11. The OER acitivites of C_3N_4 -CNT-CF with various mass loading including 0.5, 0.4 and 0.2 mg cm⁻², in 1 M KOH solution.Inste: applied potential to achieve the current density of 10 mA cm⁻² at different loding masses.

Figure S12. The morphologh of C_3N_4 -CNT-CF electrode after long-time duration test in 1M KOH solution.

Figure S13. The long-time duration tests of C_3N_4 -CNT-CF || S-C₃N₄-CNT-CF system in 1 M KOH solution at 1.8 V.

Sample	BET surface area	Pore size	Pore Volume	
	(m ² /g)	(nm)	(cm ³ /g)	
C_3N_4	21.4	21.6	0.16	
CF	8.3	36.6	0.031	
CNT-CF	45.6	28.4	0.19	
C ₃ N ₄ -CF	34.6	25.4	0.15	
C ₃ N ₄ -CNT-CF	53.7	35.2	0.21	

Table S1. The texture properties of all carbon electrodes

Table S2. Comparasion for OER catalysts

Catalyst	Loading	Electrolyte	Onset	j [mAcm ⁻²] @	Tafel slope
	[mgcm ⁻²]	рН	[V vs RHE]	η [V vs RHE]	[mV/dec]
C₃N₄-CNT-CF *	~0.5	14	1.52	10 @ 1.60	45
C ₃ N ₄ /CNT ¹	0.2	14	1.53	10 @ 1.60	44.1
P-doped C ₃ N ₄ /CFP ²	~0.2	13	1.53	10 @ 1.63	61.6
N-doped graphene/CNT ³	0.2548	13	1.50	10 @ 1.63	83
Reduced Co ₃ O ₄ ⁴	0.136	14	~1.52		72
N-graphene /NiCo ₂ O ₄ 5		14	1.54	5 @ 1.603	156
CoMnO@CN ⁶	~2.0	14	1.46	308 @ 1.65	97
CoNi (OH) _x ⁷		14	1.48	10 @ 1.51	77
TiN@Ni₃N ⁸	~0.6	14	1.52	10 @ 1.58	93.7
IrO _x ⁴		14	1.42		85

* This work

			1	5		
Catalyst	Loading	Electrolyte	Onset	j [mAcm ⁻²] @	Tafel slope	jo
	[mgcm ⁻²]	рН	[mV]	η [mV]	[mV/dec]	[mAcm ⁻²]
S-C ₃ N ₄ -CNT-CF	~0.5	0	150	10 @ 236	81.6	0.0184
*		14	50	10 @ 131	79	0.2767
C₃N₄-graphite ⁹	0.102	0		10 @ 240	51.5	3.5×10 ⁻⁷
C ₃ N ₄ -TiO ₂ ¹⁰		13.1	100	1.3 @ 300	120	
MoS ₂ /CNT ¹¹	0.136	0	90	10@180	44.6	
CoS2	47400	0	75	40 0445	54.0	0.0400
nanowire ¹²	1.7 ± 0.3	U	/5	10 @145	51.6	0.0188
МоВ	2.5	5 0	≧100	20 @ 210	55	1.4×10 ⁻³
nanoparticle ¹³						
Mo ₂ C		0			50	4 040 3
nanoparticle ¹³	1.4	U	≧100	20 @ 240	56	1.3×10 ⁻³
CoNiNx ⁷		0	100		130	
TiN@Ni₃N ⁸	~0.6	14	15	10 @ 21	42.1	
CoO _x @CN ¹⁴	2.1	14	85	20 @ 134		
Pt ¹⁵	1	0	0	2@5	30	2.7

Table S3. Comparasion for HER catalysts

*this work

Reference:

- 1. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem., Int. Ed.*, 2014, **53**, 7281-7285.
- T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem., Int. Ed.*, 2015, 54, 4646-4650.
- 3. G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang and F. Wei, *Small*, 2014, **10**, 2251-2259.

- 4. Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang and G. Zheng, *Adv. Energy Mater.*, 2014, **4**, 1400696.
- 5. S. Chen and S.-Z. Qiao, *ACS Nano*, 2013, **7**, 10190-10196.
- 6. J. Li, Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A. M. Al-Enizi, Z. Yang and G. Zheng, *J. Am. Chem. Soc.*, 2015, **137**, 14305-14312.
- 7. S. Li, Y. Wang, S. Peng, L. Zhang, A. M. Al-Enizi, H. Zhang, X. Sun and G. Zheng, *Adv. Energy Mater.*, 2015, 1501661.
- 8. Q. Zhang, J. Mater. Chem. A, 2016, 4, 5713.
- 9. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, *Nat. Commun.*, 2014, **5**, 3783.
- 10. M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert and M. Antonietti, *Angew. Chem. Int. Ed.*, 2014, **53**, 3654-3658.
- 11. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee and X. Wang, *Nanoscale*, 2013, **5**, 7768-7771.
- 12. M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding and S. Jin, *J. Am. Chem. Soc.*, 2014, **136**, 10053-10061.
- 13. H. Vrubel and X. Hu, Angew. Chem., Int. Ed., 2012, 51, 12703-12706.
- 14. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, *J. Am. Chem. Soc.*, 2015, **137**, 2688-2694.
- 15. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, *J. Am. Chem. Soc.*, 2013, **135**, 9267-9270.