## ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

## Low-energy formic acid production from CO<sub>2</sub> using electrodeposited tin on GDE

E.Irtem<sup>a</sup>, T. Andreu<sup>a,b,\*</sup>, A. Parra<sup>a</sup>, M.D. Hernandez-Alonso<sup>c</sup>, S. García-Rodríguez<sup>c</sup>, J.M. Riesco-García<sup>c</sup>, G. Penelas-Pérez<sup>c</sup>, J.R. Morante<sup>a,b</sup>

a. Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre, 1, 08930 Sant Adrià de Besòs, Catalonia, Spain.

b. Universitat de Barcelona (UB), Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain.

c. Repsol Technology Center, C/ Agustin de Betancourt s/n, 28935 Móstoles, Madrid, Spain.

| Date,<br>Author                | Electrodes                                                                                                              | Electrolytes                                                                                                                                       | j and time                                              | E <sub>WE</sub> or E <sub>Cell</sub>                                                          | Product (max<br>efficiency)                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2016,<br>This<br>study         | Sn dep GDE,<br>10cm <sup>2</sup> ,<br>3mg.cm <sup>-2</sup> ,<br><sup>vs.</sup> DSA                                      | 0.5M NaHCO <sub>3</sub> at 25°C<br>/cath<br>0,5M NaOH /anolyte<br>10ml.min <sup>-1</sup> CO <sub>2</sub> ,                                         | 7,7 – 10mA.cm <sup>-</sup><br><sup>2</sup> ,<br>4h – 7h | -1,2 to 3V <sub>cell</sub>                                                                    | 71% HCOOH &<br>22% CO<br>at -1.05 V <sub>RHE</sub>                          |
| 2014,<br>Wang,<br>Qinian       | Sn on GDE,<br>7 cm <sup>2</sup> ,<br>5mg.cm <sup>-2</sup> , 50wt%Nf<br><sup>vs.</sup> Pt sheet 1cm <sup>2</sup>         | 0.5M KHCO <sub>3</sub> at 25ml.min <sup>-1</sup><br>/cath&anoly,<br>$30ml.min^{-1}$ CO <sub>2</sub> ,                                              | 18mA.cm <sup>-2</sup> ,<br>0,5h                         | -1,4 to -<br>2,2V <sub>AgCl</sub>                                                             | 72,9% HCOOH<br>at -1,8V <sub>AgCl</sub>                                     |
| 2014,<br>Alvarez               | Sn on GDE,<br>10cm <sup>2</sup> ,<br>1,5mg.cm <sup>-2</sup> , 1:1%Nf vol<br><sup>vs.</sup> DSA                          | 0.45M KHCO <sub>3</sub> + 0.5M KCl<br>/cath,<br>1M KOH / anoly,<br>0,57 ml.min <sup>-1</sup> .cm <sup>-2</sup>                                     | 40mA.cm <sup>-2</sup> ,<br>1,5h                         | -3.2 to -<br>6.1V <sub>cell</sub><br>-1,54 to -<br>2.55V <sub>AgCl</sub>                      | 70,5% HCOOH<br>at -1,54V <sub>AgCl</sub>                                    |
| 2014,<br>Wu,<br>Jingjie IV     | Sn spray on GDL,<br>4cm <sup>2</sup> , 0,67-6,55mg.cm <sup>-</sup><br><sup>2</sup> , 20wt% Nf<br><sup>vs.</sup> Pt foil | 0.5M KHCO <sub>3</sub> at 25°C<br>/cath&anoly,<br>45ml.min <sup>-1</sup> CO <sub>2</sub> ,                                                         | < 30mA.cm <sup>-2</sup> ,<br>0,5h                       | -1,6V <sub>SCE</sub>                                                                          | 72% HCOOH at<br>-1,6V <sub>SCE</sub>                                        |
| 2013,<br>Prakash&<br>Olah      | Sn on GDE,<br>9cm <sup>2</sup> ,<br>0.7 mg cm <sup>-1</sup> over the<br>GDL, 1:1% Nf<br><sup>vs.</sup> Pt wire          | 0.5M NaHCO <sub>3</sub> at 25°C<br>/cath&anoly,<br>4ml.min <sup>-1</sup> CO <sub>2</sub> ,                                                         | 27mA.cm <sup>-2</sup> ,<br>0,23h                        | -1,6V <sub>NHE</sub>                                                                          | 70% NaHCOO at<br>-1,6V <sub>SCE</sub>                                       |
| 2013,<br>Wu,<br>Jingjie III    | Sn on GDE,<br>4cm <sup>2</sup> ,<br>2mg.cm <sup>-2</sup><br><sup>vs.</sup> Pt on GDE,<br>0,3mg.cm <sup>-2</sup>         | 0.1M KHCO <sub>3</sub> at 7ml.min <sup>-1</sup><br>/cath&anoly,<br>45ml.min <sup>-1</sup> CO <sub>2</sub> ,                                        | 2,75mA.cm <sup>-2</sup> ,<br>2h                         | -1,2V <sub>cell</sub> *<br>*H <sub>2</sub> in anode<br>compartmen<br>t (not H <sub>2</sub> O) | 64% HCOOH<br>25% CO                                                         |
| 2011,<br>Kanan &<br>Chen       | Sn dep on Ti foil & Sn<br>foil<br>2cm2<br><sup>vs.</sup> Pt gauze,<br>NOT FLOW CELL                                     | 0.5M NaHCO <sub>3 ph 7.2</sub> /cath<br>0,5M NaOH /anoly<br>SELEMION /Anion exch.<br>memb.,<br>5ml.min <sup>-1</sup> CO <sub>2</sub> ,             | 1,8mA.cm <sup>-2</sup> ,<br>10h                         | -0,7V <sub>RHE at ph</sub><br><sup>7,2</sup><br>(-1,3V <sub>AgCI</sub> )                      | 25% HCOOH -<br>0,7V <sub>RHE ph7.2</sub><br>60% CO<br>>85% CO2<br>reduction |
| 2011,<br>Lee &<br>Machund<br>a | Sn dep GDE,<br>9cm <sup>2</sup> ,<br><sup>vs.</sup> Pt plate                                                            | n/a /cath<br>H <sub>2</sub> 10 ml.min <sup>-1</sup> + N <sub>2</sub> 90<br>ml.min <sup>-1</sup> /anoly<br>50ml.min <sup>-1</sup> CO <sub>2</sub> , | 2mA.cm <sup>-2</sup> ,<br>1h                            | -1,6V <sub>cell</sub> *<br>*H <sub>2</sub> in anode<br>compartmen<br>t (not H <sub>2</sub> O) | 12% HCOOH at<br>-1.6V (cell)                                                |
| 2007,<br>Li &<br>Oloman        | Sn dep on Cu wire<br>mesh,<br>big scale,                                                                                | 0.45M KHCO <sub>3</sub> /cath,                                                                                                                     | 22mA.cm <sup>-2</sup> ,                                 | -2.7 to -<br>4.3V <sub>cell</sub>                                                             | 91 to 63%<br>HCOOH                                                          |
| 1987,<br>Mahmood               | Sn on GDE,<br>3,2cm <sup>2</sup> ,<br><sup>vs.</sup> Carbon rod                                                         | 50g/L Na <sub>2</sub> SO <sub>4</sub> pH2,<br>50-100ml.min <sup>-1</sup> CO <sub>2</sub>                                                           | 66mA.cm <sup>-2</sup> ,<br>1,05h                        | -1,8V <sub>SCE</sub>                                                                          | 57% HCOOH at<br>1,8V <sub>SCE</sub>                                         |

Table S1. Summary of the literature on Sn-GDE for CO2R in recent years



**Figure S1.** FE-SEM images of Sn catalyst electrodeposited at different current densities. Total charge: 4.5 C cm<sup>-2</sup>.



Figure S2. XRD pattern of Sn-GDE obtained by electrodeposition on C-Toray ® paper. Reference patterns of  $\beta$ -Sn and graphite were also included.



**Figure S3.** (a) Overlapping of redox couple potential of tin after correction versus reversible hydrogen electrode potential (b) Current vs potential scans of Sn-GDE electrode inside the EC flow cell showing the stabilization of the native oxide layer in 0.5 M NaHCO3 electrolyte. 1 is the first and 10 is the last scan – conducted at 20 mV s<sup>-1</sup> (c) the current vs. potential polarization curves under N2 and CO2 bubbling for Sn-GDE vs nanostructured SnO<sub>x</sub> and Sn (5 nm) catalyst results taken from Ref.[1, 2]. The red line is in EC Flow cell operated at 10mL min<sup>-1</sup> CO<sub>2</sub> gas flow through Sn-GDE having 10 cm<sup>2</sup> geometrical electrode areas. The black line is after ohmic drop (iR) correction, R = 1.24 Ohms. Usually ohmic resistances below 1-5 ohms might not be significant in laboratory scale however our system works up to 0.[3]1 A of electrode current. Therefore 1.24 ohms create a big difference after ohmic drop subtraction from the electrode voltage.

[1].S. Zhang, P. Kang and T. J. Meyer, Journal of the American Chemical Society, 2014, 136, 1734-1737.

[2]S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek and K. T. Park, ACS Sustainable Chemistry & Engineering, 2015, DOI: 10.1021/acssuschemeng.5b01336.



**Figure. S4.** Conversion efficiency of  $CO_2$  and  $H_2O$  into syngas (CO:H2) in 0.5 M NaHCO3 electrolyte solution and 10 mL min<sup>-1</sup>  $CO_2$  and electrolyte flow rate.

Once the catalytic stability is reached after 20 minutes, 1:1, 1:1.5 and 1:2 ratio of CO to  $H_2$  gases can be obtained between -0.85, -0,75 and -0.65 V vs. RHE, respectively. At -1.15V vs. RHE, there is still a significant amount of CO gas (7.2 ± 5.5 %) however most of the coulombs passed through the cell spent most likely for HCOO<sup>-</sup> together with  $H_2$  evolution, indicator of a favoured intermediate path. Another interesting feature can be seen by syngas ratio of the experiment conducted at -0.95 V, which is getting closer to 1:1 until a rapid change arise in the end of first hour shifting 1:2 CO/H<sub>2</sub> ratio.



**Figure S5.** Cyclic voltammogram (20 mV s<sup>-1</sup>) on Sn-GDE in the filter-press cell in 0.5 M NaHCO<sub>3</sub> (50 mL min<sup>-1</sup>) increasing the amount of gas by CO<sub>2</sub> percentage in Ar gas flow (total flow 50 mL min<sup>-1</sup>). For G/L 2 and 4, 100 and 200 mL min<sup>-1</sup> of gas flow was used. in-1) on Sn-GDE electrode



**Figure S6** (a) Long term catalytic activity of Sn-GDE conducted under different current densities: 10, 5 and 1 mA.cm<sup>-2</sup> (b) EDX scan and FE-SEM; images of Sn-GDE before and after electroreduction of  $CO_2$  in EC flow cell at -1.1 V<sub>RHE</sub> in 0.5 M NaHCO<sub>3</sub> electrolyte while both gas and liquid were flowing at 10 mL min<sup>-1</sup>. There were not any Sulphur traces coming from Nafion additives that usually poison the catalytic sites which is well-known from PEMFC. Also we haven't observed any significant exfoliation of the catalyst from the backbone of the gas diffusion electrode during the simultaneous flow of gas and liquid after the full cell test. The highest catalyst material loss was calculated to be less than 6.2% which is for the test conducted at 50 and 10 mL min<sup>-1</sup> gas and liquid flow, respectively.

- [1] S. Zhang, P. Kang, T.J. Meyer, Journal of the American Chemical Society 136 (2014) 1734-1737.
- [2] S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, ACS Sustainable Chemistry & Engineering (2015).

H. Li, C. Oloman, J. Appl. Electrochem. 35 (2005) 955-965.

[3]