One Step forward to a Scalable Synthesis of Platinum-Yttrium alloyed Nanoparticles on Mesoporous Carbon for Oxygen Reduction Reaction

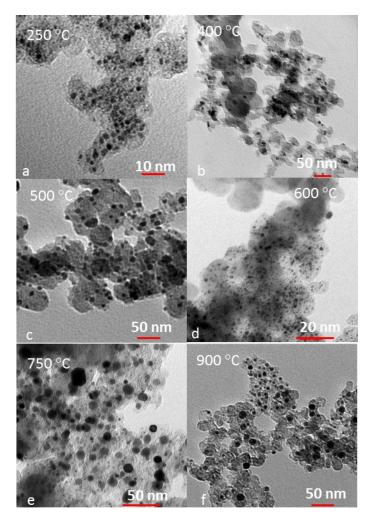
R. Brandiele,^a C. Durante, ^{a,*} E. Grądzka,^b G. A. Rizzi,^a J. Zheng,^a D. Badocco,^a P. Centomo,^a P. Pastore,^a G. Granozzi^a and A. Gennaro.^{a,*}

^aDepartment of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy. *Correspondence - <u>christian.durante@unipd.it</u>, <u>armando.gennaro@unipd.it</u>

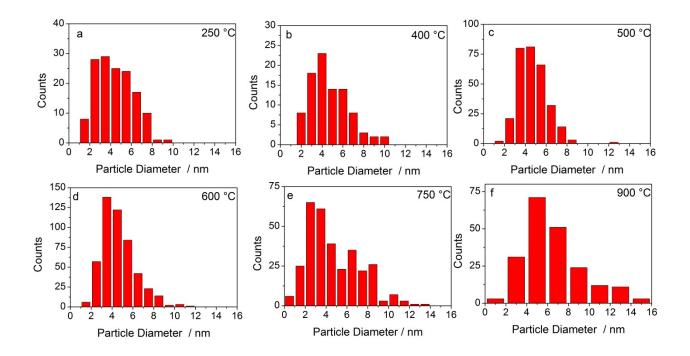
^bInstitute of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland.

Electronic Supplementary Information

1. Experimental section supporting Information.


The cell glassware and components were soaked in concentrated acid/oxidizing agent (H_2SO_4 Traceselect grade + Nochromix) in large beakers placed in a hood and subsequently were rinsed thoroughly and boiled in deionized (DI) water. Between electrochemical experiments, the glassware and components were stored submerged under DI water.

The ICP-MS was tuned daily using a tuning solution containing 1 μ g L^{-1 140}Ce, ⁷Li, ²⁰⁵Tl, and ⁸⁹Y (Agilent Technologies, UK). A 100 μ g L⁻¹ solution of ⁴⁵Sc and ¹¹⁵In (Aristar, BDH, UK) prepared in HNO₃ 1.38% was used as internal standard through addition to the sample solution via a T-junction. Multielement standard solutions for calibration were prepared by gravimetric serial dilution at six different concentrations (from 10 μ g L⁻¹ to 500 μ g L⁻¹) obtained using as solvent a 5:1 HNO₃/HCl mixture diluted to 5% by weight. All regressions were linear with a correlation coefficient (*R*²) larger than 0.9999.


Multi-element calibration standard-1, 100 mL: 10 mg/L of Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, Y, Yb; matrix 5% HNO₃ Cod: 8500-6944 (Agilent Technologies, UK). Multi-element calibration standard-3, 100 mL: 10 mg/L of Sb, Au, Hf, Ir, Pd, Pt, Rh, Ru, Te, Sn; matrix 10% HCl/1% HNO₃ Cod: 8500-6948 (Agilent Technologies, UK).

A microwave acidic digestion was performed with a CEM EXPLORER SP-D PLUS. 5 mg of samples ($Pt_xY@MC$) was weighed and digested in 7 g of mixture 1:1 HNO₃/HCl according to the following microwave acid mineralization procedure: ramp temperature from room to 220 °C in 10 min, then 220 °C for 3 min, pressure 400 PSI, power 300 W and stirring "medium". The solutions were diluted with the same solvent used for calibrations.

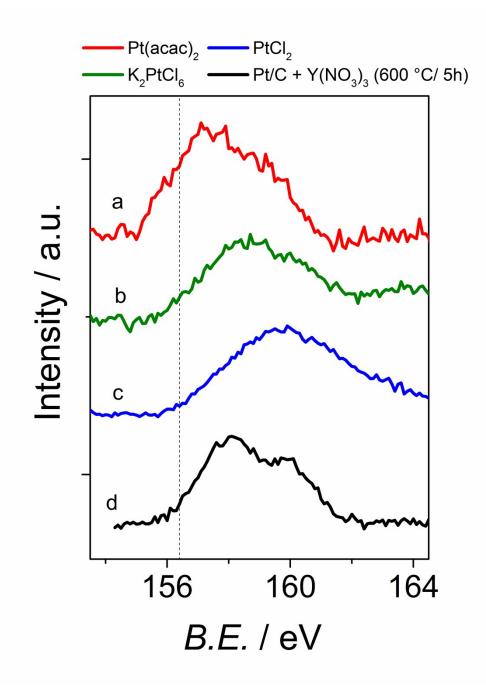

2. Figures.

Figure S1. TEM images of Pt_xY samples obtained from the co-reduction of $PtCl_2$ and $Y(NO_3)_3$ on mesoporous carbon at different temperatures.

Figure S2. Pt_xY particle size distribution for catalysts obtained from co-reduction of $PtCl_2$ and $Y(NO_3)_3$ on mesoporous carbon at different temperatures.

Figure S3. Y 3d XPS feature of Pt_xY samples obtained from a) $Pt(acac)_2$, b) K_2PtCl_6 , c) $PtCl_2$ and $Y(NO_3)_3 \cdot 6H_2O$ at 600 °C for 3 hours; d) Pt/C (Pt 30% on Vulcan) and $Y(NO_3)_3 \cdot 6H_2O$ at 600 °C for 5 hours

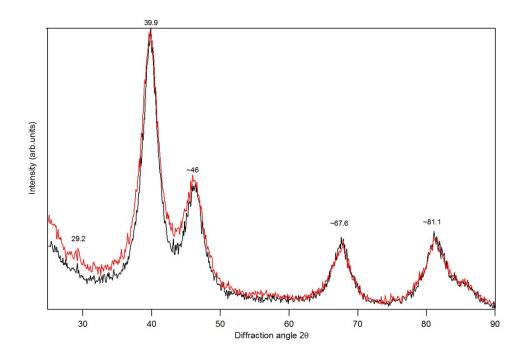


Figure S4. XRD spectra of Pt_x Y600h5 (red curve)) compared with that of pure Pt NPs (black curve).

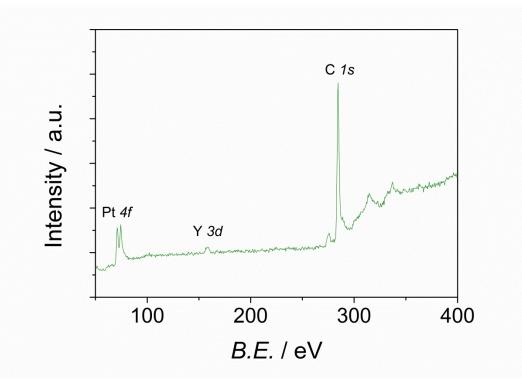


Figure S5. XPS survey of Pt_xY600h5

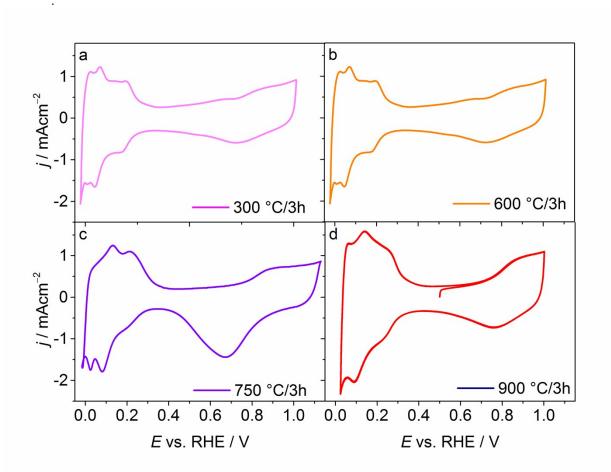


Figure S6. Cyclic voltammograms of different Pt_xY catalysts. CVs recorded at scan rate of 50 mV s⁻¹ in Ar purged 0.1 M HClO₄ at 25 °C.