Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Nitrogen Doped Carbonized Metal Organic Framework for High Stability Room

Temperature Sodium-Sulfur Battery

Yu-Ming Chen¹, Wenfeng Liang¹, Si Li¹, Feng Zou¹, Sarang M. Bhaway², Zhe Qiang², Min Gao³, Bryan D. Vogt², Yu Zhu*¹

¹Department of Polymer Science, University of Akron, Akron, Ohio 44325 USA ²Department of Polymer Engineering, University of Akron, Akron, Ohio 44325 USA ³Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA

Fig. S1. XRD patterns of the simulated ZIF-8 and as synthesized ZIF-8 structures.

Fig. S2. HRTEM-EDS quantification results of existing elements. The weight percentage quantification of important elements are as following: C 68.18%, N 9.23%, O 1.34%.

Fig. S3. ZIF-8 BET Data.

Fig. S4. ZIF-8 micropore analysis using CO₂. Pore size distribution was determined by using NLDFT model.

Fig. S5. cZIF-8 micropore analysis using CO_2 . Pore size distribution was determined by using NLDFT model. (a) Overview of the pore distribution (b) enlargement from range 0-3nm.

Fig. S6. Nitrogen contents were given as stacked columns, where the pyridinic-N, pyrrolic-N and quaternary-N gives a atomic ratio contribution of 10.2%, 5.4%, and 2.7%, respectively to the overall 18.3%.

Fig. S7. Cyclic voltammetry (CV) for the Na-S battery, the CV was scanned at a rate of 0.5 mV/s.

Reference	Cathode Composition	Electrolyte	Rate	Capacity	Cycles
				(mAh/g)	
Ryu et al. ¹	S:Carbon:PEO	1M NaCF ₃ SO ₃ in	0.144	240	10
	(60:20:20)	TEGDME	mA/cm ²		• •
Yu et al. ²	MWCNT fabric with	1.5M NaClO ₄	0.1 C	~400	30
	Na_2S_6 catholyte	and 0.3M NaNO ₃			
XX 13		in TEGDME	0/10		
Yu et al. ⁹	Na ₂ S/MWCNT	1.5M NaClO ₄	C/10	560	50
	(8:2)	and 0.3M NaNO ₃	C/3	380	50
		in TEGDME	~ ~ ~		
Yu et al. ⁺	CNF/AC Composite/Na ₂ S ₆	1.5M NaClO ₄	C/5	~550	100
		and 0.2M NaNO ₃			
		in TEGDME	0.1.0	1000	•
Xin et al. ³	S/(CNT@MPC):Super	IM NaClO ₄	0.1 C	~1000	20
	P:PVDF	EC/PC (v:v =	1 C	~600	200
	(8:1:1)	1:1)	2 C	~580	200
Wang et	(S+carbonized PAN	1M NaClO ₄ in	0.1	~500	18
al.º	composite):acetylene	EC/DMC	mA/cm ²		
	black:PTFE	(v:v = 2:1)			
	(70:20:10)				
Kim et al.'	S/C(Activated	1M NaCF ₃ SO ₃ in	1/64 C	521	104
	carbon):Super P:PVDF	TEGDME			
	(6:2:2)				
Kim et al.°	SPAN webs	1M NaPF_6 in	0.1 C	266	200
		EC/DEC		$(g_{electrode})$	
		(v:v = 1:1)			
Hwang et	c-PANS NFs:Super	0.8M NaClO ₄ in	0.22	219	>500
al."	P:PVDF	EC/DEC	A/g _{total}	$(g_{electrode})$	
10	(70:15:15)	(v:v = 1:1)			
Yu et al. ¹⁰	Na ₂ S/AC-CNF	1.5M NaClO ₄	C/5	~600	100
		and 0.2M NaNO ₃			
		in TEGDME			
Kim et al. ¹¹	S/C(Activated	1M NaCF ₃ SO ₃ in	1/128 C	782	37
	carbon):Super P:PVDF	TEGDME			
D	(6:2:2)		0.1.0	250	20
Bauer et	S:Carbon:MWCNT:PTFE	IM NaClO ₄ in	0.1 C	350	20
al.	(42.5:42.5:12:3)	TEGDME	0.10	600	100
Zhang et 1^{13} (1 : 0)	DHCS-S:Super P:PVDF	IM LITESI in	0.1C	690	100
al. $(L1-S)$		TEGDME	100	010	100
Wu et al.	MPCP-S-I/S:Super	$1ML1PF_6$ in	100	210	100
(L1-S)	P:PVDF	EC/DEC	mA/g _{total}	$(g_{electrode})$	
		1M NL 010 '	0.1.0	1000	10
This Work	cZIF-8/S:Super P:PVDF	1M NaClO ₄ in	0.1 C	1000	10
		TEGDME	0.2 C	~ 850	20
			0.2 C	~ 650	100
			0.2 C	~ 500	250

Table S1. Comparison of sodium-sulfur cell references and similar lithium-sulfur cell with cathode composition and their electrochemical performances.

References

- H. Ryu, T. Kim, K. Kim, J.-H. Ahn, T. Nam, G. Wang and H.-J. Ahn, *Journal of Power Sources*, 2011, **196**, 5186-5190
- 2. X. Yu and A. Manthiram, The Journal of Physical Chemistry C, 2014, 118, 22952-22959
- 3. X. Yu and A. Manthiram, *Chemistry A European Journal*, 2015, **21**, 4233-4237.
- 4. X. Yu and A. Manthiram, Advanced Energy Materials, 2015, 5, 1500350.
- 5. S. Xin, Y.-X. Yin, Y.-G. Guo and L.-J. Wan, Advanced Materials, 2014, 26, 1261-1265.
- J. Wang, J. Yang, Y. Nuli and R. Holze, *Electrochemistry Communications*, 2007, 9, 31-34.
- 7. I. Kim, J.-Y. Park, C. H. Kim, J.-W. Park, J.-P. Ahn, J.-H. Ahn, K.-W. Kim and H.-J. Ahn, *Journal of Power Sources*, 2016, **301**, 332-337.
- 8. I. Kim, C. H. Kim, S. h. Choi, J.-P. Ahn, J.-H. Ahn, K.-W. Kim, E. J. Cairns and H.-J. Ahn, *Journal of Power Sources*, 2016, **307**, 31-37.
- T. H. Hwang, D. S. Jung, J.-S. Kim, B. G. Kim and J. W. Choi, *Nano Letters*, 2013, 13, 4532-4538.
- 10. X. Yu and A. Manthiram, Chemistry of Materials, 2016, 28, 896-905.
- 11. I. Kim, J.Y. Park, C.H. Kim, J.W. Park, J.P. Ahn, J.H. Ahn, K.W. Kim and H.J. Ahn, *Journal of the Electrochemical Society*, 2016, **163**, A611-A616
- I. Bauer, M. Kohl, H. Althues and S. Kaskel, *Chemical Communications*, 2014, **50**, 3208-3210
- J. Zhang, H. Hu, Z. Li and X. W. Lou, *Angewandte Chemie International Edition*, 2016, 55, 3982-3986.
- 14. H. B. Wu, S. Wei, L. Zhang, R. Xu, H. H. Hng and X. W. Lou, *Chemistry A European Journal*, 2013, **19**, 10804-10808.