Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Synthesis of Co-Sn Intermetallic Nanocatalysts toward Selective

Hydrogenation of Citral

Junyao Zhou,[‡]^a Yusen Yang,[‡]^a Changming Li,^b Shitong Zhang,^a Yudi Chen,^a Shuxian

Shi*a and Min Wei*a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, P. R. China

^b State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering,

Chinese Academy of Sciences, Beijing 100190, China

*Corresponding authors. Phone: +86-10-64412131. Fax: +86-10-64425385. E-mail: weimin@mail.buct.edu.cn

‡ Contributed equally to this work.

Fig. S1 (A) XRD pattern and (B) SEM image of the as-synthesized CoZnAl-LDH precursor.

Fig. S2 (A) XRD patterns of (a) $CoSn(OH)_6$, $CoSn(OH)_6/CoZnAl-LDHs$ with Sn/Co molar ratio of (b) 2/2.9, (c) 1/1 and (d) 2/1. SEM images of $CoSn(OH)_6/CoZnAl-LDHs$ wih Sn/Co molar ratio of (B) 2/2.9, (C) 1/1 and (D) 2/1. The scale bar is 1 µm.

Fig. S3 H_2 -TPR profiles for (a) CoZnAl-LDHs, CoSn(OH)₆/CoZnAl-LDHs samples with various Sn/Co molar ratio: (b) 2/2.9, (c) 1/1, (d) 2/1, (e) CoSn(OH)₆.

Fig. S4 SEM images of the as-synthesized supported Co and Co-Sn IMCs in the matrix of ZnO- Al_2O_3 : (A) Co, (B) Co_{2.9}Sn₂, (C) CoSn, and (D) CoSn₂. The scale bar is 1 µm.

Fig. S5 Structural models of Co and Co–Sn IMCs: (A) Co, (B) Co_{2.9}Sn₂, (C) CoSn, (D) CoSn₂. Co: blue ball, Sn: gray ball.

Fig. S6 Catalyst recycling test over the CoSn IMC catalyst toward citral hydrogenation.

Fig. S7 Adsorption state of hydrogen on Co_{2.9}Sn₂ (004) facet. A, B, C, D correspond to α , β , γ , σ adsorption site in the H₂-TPD measurement, respectively.

Fig. S8 Adsorption state of hydrogen on $CoSn_2$ (211) facet. A, B, C correspond to α , β , γ adsorption site in the H₂-TPD measurement, respectively.

Fig. S9 Schematic representation for the five adsorption modes of HCHO and two adsorption modes for C₂H₄: (a) di- σ_{CO} l; (b) di- σ_{CO} ; (c) di- σ_{CO} Sn; (d) π_{CO} ; (e) atop; (f) di- σ_{CC1} l; (g) π_{CC} . The blue, dark gray, gray, red and white sphere represent Co, Sn, C, O and H atom, respectively.

Fig. S10 Calculated partial densities of states (PDOS) for the adsorbed HCHO and C_2H_4 on the mode of (a) di- σ_{CO} Sn (c) and di- σ_{CC} l, respectively. The free PDOS for the gas-phase (b) HCHO and (d) C_2H_4 are also included for comparison. The Fermi level lies at 0 eV. For free HCHO: the HOMO is n_0 at ~0 eV and LUMO is π^*_{CO} at ~3 eV. For free C_2H_4 : the HOMO is π_{CC} at ~0 eV and LUMO is π^*_{CO} at ~4 eV.

Table S1.	Adsorption	modes, g	geometrical	parameters,	charge	transfer	and	adsorption	energy	for
the adsorp	tion of HCH	O on the	CoSn(201)	facet (L _{CO} =	1.22 Å t	for free I	ICH	0)		

НСНО	L _{CoC}	L _{MO}	L _{CO}	∠HCO	Δe^{b}	E_{ads}
di- $\sigma_{\rm CO}$ l	2.01/2.13	1.90	1.33	109.3	0.2	-1.75
di- $\sigma_{_{ m CO}}$	1.94	1.89	1.32	111.3	0.08	-1.65
di- $\sigma_{\rm CO}^{}{ m Sn^a}$	1.90	2.33	1.29	107.2	0.08	-1.13
$\pi_{_{ m CO}}$	2.07	1.97	1.32	115.6	0.17	-0.98
atop		1.89	1.25	119.6	-0.08	-0.67

^a The Sn term means that the oxygen atom interacts with a tin atom.

^b Δe : the charge transfer value from CoSn(201) surface to HCHO.

C_2H_4	L _{CoC1}	L _{CoC2}	L _{CC}	∠HCH	Δe ^a	$E_{ m ads}$
di- $\sigma_{\rm CC}$ l	2.00/2.05	2.00	1.44	112.9/113.9	0.07	-1.85
$\pi_{_{\rm CC}}$	2.06/2.04		1.42	115.4/113.4	0.08	-1.34

Table S2. Adsorption modes, geometrical parameters, charge transfer and adsorption energy for the adsorption of C_2H_4 on the CoSn (201) facet (L_{cc} =1.33 Å for free C_2H_4)

^a Δe : the charge transfer value from CoSn(201) surface to C₂H₄.

Table S3. Detailed structural parameters for various catalysts

Sample	Co content	Sn content	Na content	Specific surface	Mean particle size	Mean particle size
	/ wt% ^a	/ wt% ^a	/ wt% ^a	area / $(m^2 g^{-1})^{b}$	by TEM / nm	by XRD / nm ^c
Co	11.3	0.0	0.0	55.6	15.3	15.1
$Co_{2.9}Sn_2$	9.6	12.9	0.2	28.9	17.9	19.6
CoSn	9.0	18.2	0.3	34.6	19.3	21.2
CoSn ₂	7.6	30.7	0.8	15.5	20.1	22.3

^a Determined by ICP measurement.

^b Determined by BET measurement.

^c Determined by Scherrer formula.