Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016adjust margins

Journal Name

ARTICLE

Supporting Information

Graphene/Nitrogen-Doped Porous Carbon Sandwiches for Metal-Free Oxygen Reduction Reaction: Conductivity versus Active Sites

M. Qiao^{1‡}, C. Tang^{1, 2‡}, G. He³, K. Qiu³, R. Binions^{1, 4}, I. Parkin³, Q. Zhang^{1, 2} Z. Guo³ and M. M. Titirici^{1,4*}

- 1 School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- 2 Beijing Key Laboratory of Green Chemical Reaction Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- 3 Materials Chemistry Centre, Department of Chemistry, University College London, London, WC1H 0AJ, UK
- 4 Materials Research Institute, Queen Mary University of London, London, E1 4NS, UK
- ⁺ M. Qiao and C. Tang contribute equally to this work.

ARTICLE

Supplementary figures

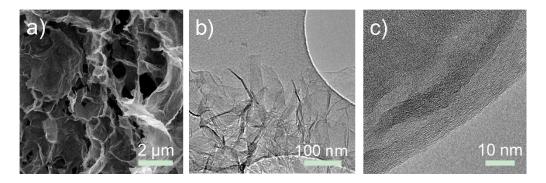


Fig. S1 (a) SEM image and (b, c) TEM images of rGO obtained after HTC and high-temperature annealing.

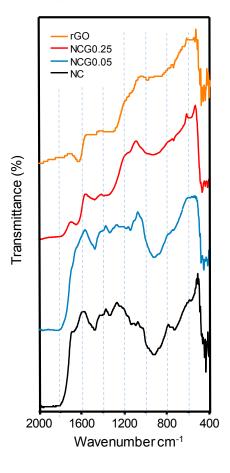


Fig. S2 FTIR spectra of NC, NCG0.05, NCG0.25 and rGO

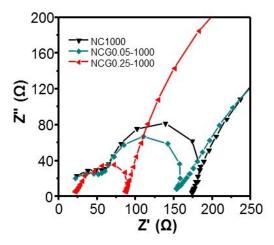


Fig. S3 Electrical conductivity of different samples measured by the impedance

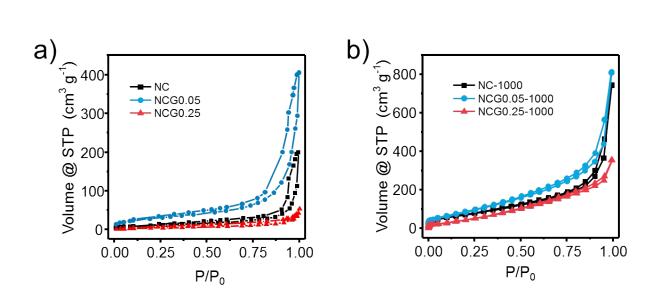
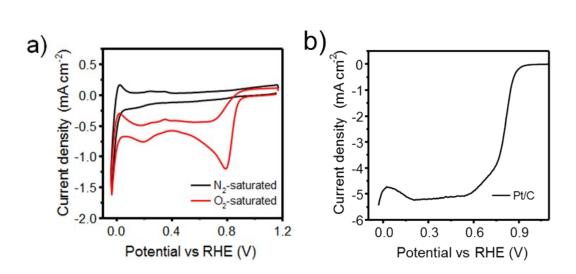
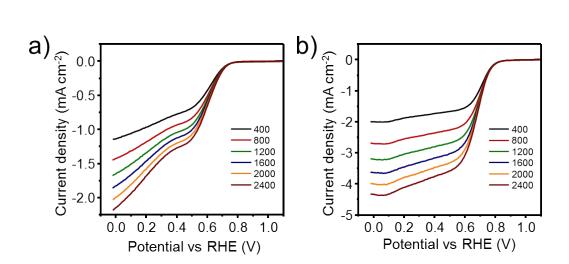
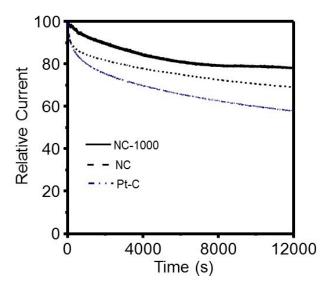


Fig. S4 The N₂ sorption isotherms of samples obtained after (a) HTC and (b) high-temperature annealing.

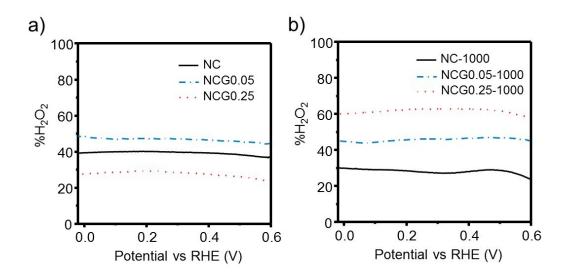

Fig. S5 (a) CV and (b) LSV curves of Pt/C catalyst.

Fig. S6 LSV curves of (a) NCG0.25 and (b) NC-1000 at different rotating speeds of 400, 800, 1200, 1600, 2000, and 2400 rpm, respectively.

Fig. S7 Current—time chronoamperometric responses of NC-1000, NC and Pt-C measured at peak potential in CV curves as shown in Fig. 4a.

Fig. S8 Peroxide yields of (a) NC, NCG0.05, NCG0.25 and (b) NC-1000, NCG0.05-1000, NCG0.25-1000 in 0.1M KOH at rotating speed of 1600 rpm.

ARTICLE

Supplementary tables

Table S1 Mass record of different samples during fabrication.

	GO	Chitosan	Monocom yield (mg)	ponent-calcu	Experimental yield		
	(mg)	(mg)	rGO	HTC- chitosan	Product	(mg)	
GO	60	0	25.9	0	25.9	25.9	
NC	0	1200	0	372.0	372.0	372.0	
NCG0.25	60	180	25.9	55.8	81.7	122.6	
NCG0.05	60	1200	25.9	372.0	397.9	672.4	

a) The monocomponent-calculated yield was calculated based on the yield of chitosan and GO in monocomponent HTC systems. Experimental yield refers to the mass of product obtained in the actual experiment.

Table S2 XPS results of different samples.

Sample	Atom Species (at. %)								
Sample	C	О	N	Pyridinic-N	Pyrrolic-N	N Quaternary-N	V Oxidized-N		
NC	75.16	21.39	3.45	1.27	1.38	0.79	-		
NCG0.05	76.13	18.22	5.65	1.49	2.97	1.19	-		
NCG0.25	80.97	15.01	4.02	1.08	2.15	0.79	-		
NC-1000	90.87	7.45	1.68	0.47	-	0.97	0.24		
NCG0.05-1000	96.48	2.04	1.48	0.26	-	0.98	0.23		
NCG0.25-1000	94.39	4.39	1.22	0.17	-	0.84	0.21		

Table S3 Specific surface area and total pore volume of different samples.

C1-	NC	NCG0.05	NCG0.25	NC-	NCG0.05	NCG0.25
Sample	NC			1000	-1000	-1000
SSA (m ² g ⁻¹)	36	99	25	278.9	339	223
Pore volume (cm ³ g ⁻¹)	0.1	0.34	0.06	0.81	0.91	0.43

Table S4 The ORR peak potential and peak current density in CV curves as shown in Fig. 4a.

Sample	Peak potential vs RHE (mV)	Peak current density (mA cm ⁻²)
NC	504	0.539
NCG0.05	498	0.425
NCG0.25	552	0.590
NC-1000	689	1.152
NCG0.05-1000	606	1.059
NCG0.25-1000	558	0.924

Table S5 ORR activity observed from the LSV curves in Fig. 4b.

	NC	NCG0.05	NCG0.25	NC-	NCG0.05	NCG0.25
	NC			1000	-1000	-1000
Onset						
potential*	832	839	922	993	987	844
(mV)						

Saturated						
current	1.57	1.75	1.85	3.61	3.39	3.15
density	1.37	1.73	1.03	3.01	3.39	3.13
(mA cm ⁻²)						
Half wave						
potential	340	357	524	666	600	363
(mV)						

^{*} The onset potential is determined as the potential required for a current density of -2 μA cm⁻² (vs. RHE)