Supporting Informations

Computational Studies on the Structural, Electronic and Optical Properties of Graphene-like MXenes (M_2CT_2 , M = Ti, Zr, Hf; T = O, F, OH) and Their Potential Applications as Visible-Light Driven Photocatalysts.

Haijun Zhang,^{a,*} Guang Yang,^b Xueqin Zuo,^a Huaibao Tang,^a Qun Yang,^a Guang Li^{a,*}

a Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230601, P. R. China.

*E-mail: hjzhang_ahu@163.com (HZ); liguang1971@ahu.edu.cn (GL)

b Department of Environmental Engineering, College of Urban Construction, Hebei

University of Engineering, Handan, Hebei 056038, China.

Figure S1 Top view (upper) and side view (lower) of the geometric structures for the (a) Ti_2CF_2 -I, (b) Ti_2CF_2 -II, (c) Ti_2CF_2 -III, (d) $Ti_2C(OH)_2$ -I, (e) $Ti_2C(OH)_2$ -II and (f) $Ti_2C(OH)_2$ -III.

Figure S2 Phonon dispersion of the surface functionalized Ti_2C MXene with the Ti_2CT_2 -II and Ti_2CT_2 -III structures (T = O, F and OH).

Figure S3 Phonon dispersion of the surface functionalized Zr_2C MXene with the Zr_2CT_2 -II and Zr_2CT_2 -III structures (T = O, F and OH).

Figure S4 Phonon dispersion of the surface functionalized Hf₂C MXene with the Hf₂C T_2 -II and Hf₂C T_2 -III structures (T = O, F and OH).

Figure S5 Isosurfaces of ELF plotted with the value of 0.7 au for the (a) Ti_2CO_2 , (b) Ti_2CF_2 and (c) $Ti_2C(OH)_2$ with different geometries. In view of the similar characteristics of the functionalized MXenes with different metal elements, only the isosurfaces of ELF for Ti_2CT_2 (T = O, F and OH) are presented.

Figure S6 Band structures of the M_2 CF₂-III. Green dashed lines represent the Fermi level at 0 eV.

Figure S7 Density of states (DOS) and projected DOS (PDOS) of (a) Ti_2CO_2 , (b) Zr_2CO_2 and (c) Hf_2CO_2 . Green dashed lines represent the Fermi level at 0 eV. PDOS around the Fermi level are enlarged to clarify the VBMs contributed by different atoms (inserted images). According to the PDOS results, the VBMs are mainly composed of C-*p* orbitals and CBMs consist of *M*-*d* (*M* = Ti, Zr, Hf) states.

Figure S8 Projected DOS of the (a, b, c) Ti_2CF_2 , (d, e, f) Zr_2CF_2 and (g, h, i) Hf_2CF_2 materials with different geometries.

Figure S9 Projected DOS of the (a, b, c) $Ti_2C(OH)_2$, (d, e, f) $Zr_2C(OH)_2$ and (g, h, i) $Hf_2C(OH)_2$ materials with different geometries.

Figure S10 (a) Structure schematics of Ti_2CO_2 -I monolayer in a 6 × 6 supercell. (b) The relationship between the total energy and strain along zigzag (y) direction and armchair (x) direction. The energy of VBM and CBM shift with respect to the lattice dilation and compression along (c) armchair and (d) zigzag directions, calculated by HSE06 method. Solid lines are guide for eyes.

	Ti_2CT_2			Zr_2CT_2			Hf_2CT_2		
	T=O	T=F	T=OH	T=O	T=F	T=OH	T=O	T=F	T=OH
$M_2 C T_2$ -I	7.10	6.49	5.70	7.68	6.95	6.01	7.95	7.03	6.10
$M_2 CT_2$ -II	6.75	6.39	5.65	7.29	6.87	5.98	7.52	6.96	6.07
$M_2 CT_2$ -III	6.95	6.45	5.67	7.51	6.92	6.00	7.75	7.01	6.09

Table S1 Cohesive energies (E_{coh} in eV/atom) of the functionalized MXenes

Table S2 Charge partitioning by Hirshfeld method for M_2CO_2 (M = Ti, Zr, Hf) with different geometries.

	Metal	Carbon	Oxygen
Ti ₂ CO ₂ -I	0.414	-0.331	-0.248
Ti ₂ CO ₂ -II	0.366	-0.291	-0.221
Ti ₂ CO ₂ -III	0.389	-0.310	-0.234
Zr ₂ CO ₂ -I	0.520	-0.402	-0.319
Zr ₂ CO ₂ -II	0.460	-0.349	-0.285
Zr ₂ CO ₂ -III	0.489	-0.370	-0.303
Hf ₂ CO ₂ -I	0.515	-0.403	-0.313
Hf ₂ CO ₂ -II	0.457	-0.355	-0.280
Hf ₂ CO ₂ -III	0.486	-0.376	-0.298

Table S3 Band gaps (E_g in eV) of the M_2CT_2 with differently functionalizing geometries. The band gaps of 0 eV denote the metallic properties of the corresponding M_2CT_2 .

	Ti ₂ CT ₂			Zr_2CT_2			Hf_2CT_2		
	T=O	T=F	T=OH	T=O	T=F	T=OH	T=O	T=F	T=OH
$M_2 C T_2$ -I	0.92	0	0	1.54	0	0	1.75	0	0
$M_2 CT_2$ -II	none	0	0	none	0	0	none	0	0
$M_2 CT_2$ -III	none	0.02	0	none	0.25	0	none	0.42	0

Computational Details of the Band Edge Positions

The band edge alignments were determined by computing the CBM/VBM energies relative to the vacuum level at 0 eV. Take the Ti₂CO₂-I for an example, the vacuum level of Ti₂CO₂-I was computed through VASP by setting the "LVTOT = TRUE". Also, under the same basic sets, we calculated the band structures and got the values of VBM and CBM level. Finally, the band edge positions can be determined by comparing the difference between the VBM (or CBM) and vacuum level. To evaluate the reduction/oxidation capability of the photocatalysts, we usually take the normal hydrogen electrode (E_{NHE}), which equals to -4.5 eV with respect to absolute vacuum scale ($E_{\text{AVS}} = 0$ eV), as a reference for comparing redox potentials of the band edges.

Table S4 Calculated vacuum levels (in eV), CBM and VBM energies (in eV) for M_2 CO₂ (M = Ti, Zr, Hf) materials, through the HSE06 functional. V_{DFT} represents the values of CBM (or VBM) energies obtained from DFT computations, while the V_{AVS} and V_{NHE} are band edge positions relative to the absolute vacuum scale (E_{AVS} = 0 eV) and normal hydrogen electrode (E_{NHE} = -4.5 eV)

	Vacuum	E _{CBM}			$E_{ m VBM}$			
	Level	$V_{\rm DFT}$	V _{AVS}	V _{NHE}	$V_{\rm DFT}$	V _{AVS}	$V_{\rm NHE}$	
Ti ₂ CO ₂	2.70 eV	-2.90	-5.60	1.1	-3.82	-6.52	2.02	
Zr ₂ CO ₂	2.56 eV	-2.09	-4.65	0.15	-3.63	-6.19	1.69	
Hf ₂ CO ₂	2.71 eV	-1.53	-4.24	-0.26	-3.28	-5.99	1.49	

Table S5 Effective mass $|m^*|$, DP constant $|E_1|$, in-plane stiffness *C*, and carrier mobility μ for electrons and holes along the *x* and *y* directions in 2D M_2 CO₂-I (M = Ti, Zr, Hf).

		$ m^* (m_e)$	<i>C</i> (N/m)	$ E_1 $ (eV)	μ (cm ² V ⁻¹ S ⁻¹)
Ti ₂ CO ₂	electrons (x)	0.42	132.59	1.62	4.07×10^{3}
	holes (x)	0.14	132.59	2.44	1.61×10^{4}
	electrons (y)	0.44	147.53	2.50	1.73×10^{3}
	hole (y)	0.13	147.53	2.18	2.61×10^{4}
Zr ₂ CO ₂	electrons (x)	0.31	132.30	4.90	8.14×10^{2}
	holes (x)	0.11	132.30	1.38	8.15×10^{4}
	electrons (y)	0.32	148.03	11.94	1.44×10^{2}
	hole (y)	0.10	148.03	7.00	4.29×10^{3}
Hf ₂ CO ₂	electrons (x)	0.18	146.13	5.02	2.57×10^{3}
	holes (x)	0.09	146.13	0.9	3.46×10^{5}
	electrons (y)	0.18	164.11	10.76	6.21×10^{2}
	hole (y)	0.09	164.11	6.98	6.18×10^{3}