Electronic Supplementary Information

A feasible random copolymer approach for high-efficiency polymeric photovoltaic cells

You-Sun Lee,^{‡a} Ji Young Lee,^{‡b} Su-Mi Bang,^a Bogyu Lim,^{*b} Jaechol Lee,^b and Seok-In Na^{*a}

^aProfessional Graduate School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea

^b Future Technology Research Center, Corporate R&D, LG Chem Research Park, 188, Moonji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

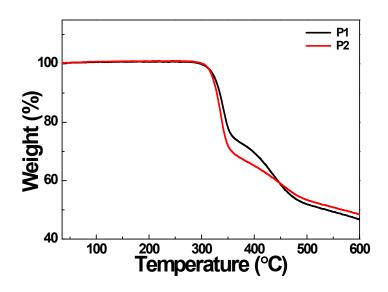


Figure S1. Thermal gravimetric analysis (TGA) curves of P1 and P2.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

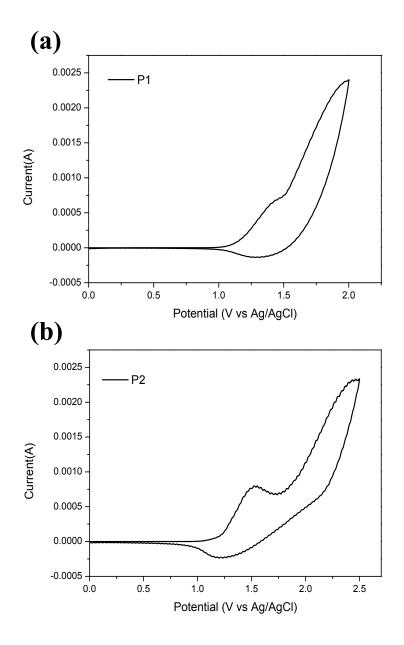
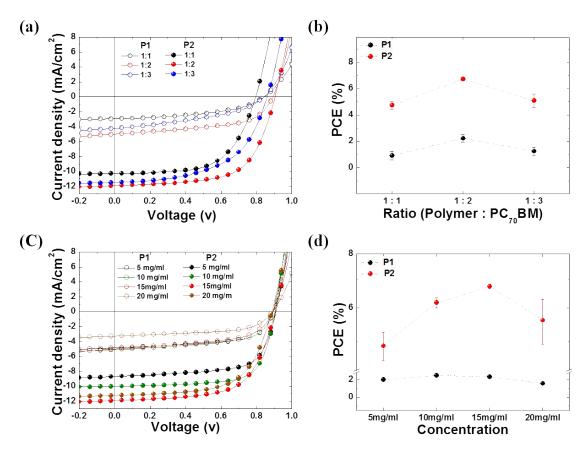



Figure S2. Cyclic voltammogram of (a) P1 and (b) P2

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Figure S3. (a) The representative J–V curves for OPVs with various blend ratios (polymer: $PC_{70}BM$). (b) PCE changes with different polymer: $PC_{70}BM$ ratios for P1 and P2 based devices. (c) The representative J–V curves for OPVs with various concentrations. (d) PCE changes with different concentrations for P1 and P2 based devices.