Electronic Supplementary Information (ESI)

A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance

Yang Yang ^{a,b}, Tianyu Liu ^b, Qiang Liao ^a, Dingding Ye ^{a,†}, Xun Zhu ^a, Jun Li ^a, Pengqing Zhang ^a, Yi Peng ^b, Shaowei Chen ^b, Yat Li ^{b,††}

^a Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China

^b Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060

Dingding Ye[†]-Ph.D, Corresponding Author, Professor;

Address: Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, P.R. China

Tel/Fax: +86-23-6510-2474

Email: dingdingye@cqu.edu.cn

Yat Li^{††}-Ph.D., Corresponding Author, Associate Professor;

Address: Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, USA

Tel: +1-831-459-1952

E-mail: yatli@ucsc.edu

Supplementary Figures and Tables

Fig.S1 Fabrication process of ORR catalysts (AC@N-GA).

Fig.S2 XPS survey spectrum collected for AC@N-GA.

Fig.S3 Bacterial aggregation on the air-cathode. The inset shows the enlarged view of bacteria cells.

Fig.S4 The morphology of plain rGO@Ni scaffold without bacterial inoculation. The inset shows the enlarged view of square region.

Fig.S5 (a) Time course of cell voltage during inoculation process; (b) surface morphologies after successful inoculation at bioanode. The inset depicts the enlarged view of bacteria. Particles deposited on the bacterial cells are sputtered gold particles.

Fig.S6 (a) The volumetric power density and polarization curve of a μ MFC cell using Pt/C cloth and rGO@Ni as air-cathode and bio-anode, respectively. The chamber size is 50 μ L. (b) RRDE curves of Pt/C collected in O₂-saturated 0.1 M KOH aqueous electrolyte.

Fig.S7 Equivalent electric circuit used to fit the Nyquist plot. Abbreviations: R_{Ω} -ohmic resistance; $CPE_{dl,a}$ and $CPE_{dl,c}$ -constant phase element associated to the double layer at the surface of anode and cathode, respectively; $R_{CT,a}$ and $R_{CT,c}$ -charge transfer resistance of anode and cathode, respectively; R_{D} -mass transfer resistance at air-cathode.

Fig.S8 N 1s XPS spectra of AC@N-GA after MFC running.

Fig.S9 Catalytic performance of the AC@N-GA catalyst after the long-term operation measured in O_2 -saturated 0.1 M KOH aqueous electrolyte. (a) RRDE curves at various rotation speeds and (b) disk and ring current-potential (*I-V*) curves at a rotation speed of 1600 rpm. Inset shows the onset potential at 1600 rpm.

Table S1 Fitted parameters of	of elements	in the equivale	ent electric circuit	shown in Fig. S9.
-------------------------------	-------------	-----------------	----------------------	-------------------

	CPE dl,a	R _{CT,a} /ohm	R_{Ω} /ohm	CPE dl,c	$R_{\rm CT,c}$ /ohm	R_D /ohm
μMFC	0.001	11.3	14.6	0.012	447.2	227.5

Table S2 Elements content of AC@N-GA

	C 1s	N 1s	O 1s
Before test	89.81%	5.22%	4.97%
After test	85.24%	5.49%	9.27%