Supplementary Information

Formation of N-doped molybdenum carbide confined into hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties

Jiyicheng Qiu^a, Zhanxu Yang^a*, Qiang Li^a, Yue Li^b, Xian Wu^a, Chengyuan Qi^a, Qingdong Qiao^a

^a College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China.

^b School of Foreign Languages, Liaoning Shihua University, Fushun,

Liaoning 113001, P. R. China

*Corresponding author: zhanxuy@126.com(Z. Yang).

Fig. S1 The first-principles calculation results of binding energy difference upon the sodium ion absorption into various molybdenum carbide or nitride.

Fig. S2 (a) SEM image of melamine-based supramolecular precursor show the hollow structure. (b) SEM image of PM-500 reveal that the annealed sample also maintain the hollow structure. (c) SEM image of broken melamine-based supramolecular microsphere. (d) SEM image of broken PM-500 microsphere. (e) TEM image of PM-500 sample show the uniform dispersion of MoC_xN_y nanoparticles. (f) SEM image of the melamine-based supramolecular samples without addition of L-glutamic acid

Fig. S3 TG analysis for the calcination of melamine-based supramolecular precursor up to 900 $^{\rm o}C$ in N_2 gas.

Fig. S4 (a) XRD pattern and (b) SEM image of the as-obtained carbon nitride matrix.

(c) XRD pattern of the calcined composites before and after $FeCl_3$ etching treatment.

Fig. S5 XRD pattern comparison for PM-500 with (a) MoC_{1-x} (JCPDS 01-89-2868), (b) MoC_{1-x} (JCPDS 01-089-4305), (c) MoC (JCPDS 65-0280), (d) MoC (JCPDS 65-6664), (e) MoN (JCPDS 25-1367) and (f) MoN (JCPDS 89-2904).

Fig. S6 XRD pattern comparison for PM-600 with (a) Mo_2N (JCPDS 03-0907), (b) Mo_2N (JCPDS 25-1368), (c) No_2N (JCPDS 65-6236), (d) Mo_3N_2 (JCPDS 65-4278), (e) MoN (JCPDS 25-1367) and (f) Mo_2N (JCPDS 25-1366)

Fig. S7 (a) The XRD pattern of pure Mo_2C and the mixture compound of pure Mo_2C , MoN and Mo_2N . (b) the Raman spectra of pure Mo_2C and the mixture compound of pure Mo_2C , MoN and Mo_2N .

Fig. S8 XPS spectra of PM-500 for (a) Mo3*d* and (b) N1*s*. XPS spectra of PM-700 for (c) Mo3*d* and (d) N1*s*.

Fig. S9 Cyclability tests on the as-obtained carbonaceous materials calcined at 500,

600 and 700 °C at a current density of 0.16 A g $^{-1}$ for 100 cycles.

Fig. S10 The Relationship between the peak current and the square root of sweep

rates

Fig. S11 The fitted XRD pattern of the PM-500 electrode (a) without cycling (spot 1), (b) at the discharge potential 0.9 V (spot 2) and (b) charge potential 3 V (spot 5) by TOPAS software. (d) The 2 θ region 33~40 ° magnification for the fitted XRD pattern of the electrode at the above three step. (spot 3: discharge to 0.01 V; spot 4: charge to 1.4 V)

Fig. S12 The TOPAS analysis on XRD pattern of the PM-700 composites.

Sample	Ρ	Species Percentage (%)				
	Mo-C	Mo-N	Mo-O	Mo-C	Mo-N	Mo-O
PM-500	228.4 ; 230.9	229.1 ; 231.9	232.6 ; 235.5	22.62	33.72	41.66
PM-600	228.6 ; 231.3	229.4 ; 232.2	232.6 ; 235.4	18.48	37.61	43.91
PM-700	228.8 ; 231.6	229.8 ; 232.4	232.7 ; 235.5	11.27	45.94	42.79

Table S1 Characteristics of the deconvoluted Mo3d spectra for various composites

Table S2 Characteristics of the deconvoluted N1s spectra for various composites

Species	Peak Position (eV)			Species Percentage (%)		
	PM-500	PM-600	PM-700	PM-500	PM-600	PM-700
Mo-N	397.1	397.2	397.3	55.87	57.7	58.13
pyridinic-N	398.2	398.6	398.6	17.03	18.62	16.51
pyrrolic-N	399.5	399.8	399.6	15.66	14.22	14.01
graphitic- N	400.9	401.3	401.2	11.44	9.46	11.35

Table S3 Refined parameters of molybdenum carbonitride at various potential steps and the cell parameters of Pristine α -MoC_{1-x} (JCPDS 01-89-2868)

Samples	Refined lattice parameters
MoC_xN_y with no cycling (Spot 1)	<i>a=b=c</i> =4.137±0.003 Å
MoC_xN_y discharged to 0.9V (Spot 2)	<i>a=b=c</i> =4.172±0.004 Å
MoC_xN_y charged to 3V (Spot 5)	<i>a=b=c</i> =4.151±0.002 Å
Pristine α -MoC _{1-x}	<i>a=b=c</i> =4.270 Å

Matorials	Current rate	Specific capacity	Ref	
Materials	(mA g⁻¹)	(mAh g⁻¹)		
MgFe ₂ O ₄ /reduced	100	306	1	
graphene oxide	500	197.6	Ŧ	
	100	221	2	
$10_2/C$	500	173		
Cu-doped	100	123		
$Li_4Ti_5O_{12}$ /carbon	400	79	3	
nanofiber	400	75		
SnO /carbon fibor	100	359	4	
	400	251		
	0.3 C	133.2	-	
	0.5C	122.2	5	
Co. N. voo oor etal	200	164	6	
Sn_3N_4 hanocrystal	400	127		
	100	183	7	
carbon-coated HU ₂	400	149	/	
	160	305	0	
wosz nanosneets	320	251	ð	
MoC _x N _y /carbon nitride	160	410	Our	
hollow microsphere	500	310	work	

Table S4 Comparison for electrochemical properties of various anode materials forsodium ion batteries

References

- 1 X Zhang, T Chen, D Yan, W Qin, B Hu, Z Sun and L Pan, MgFe₂O₄/reduced graphene oxide composites as high-performance anode materials for sodium ion batteries, Electrochim. Acta., 2015, **180**, 616-621.
- 2 C. Ding, T. Nohira and R. Hagiwara, A high-capacity TiO₂/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte, J. Mater. Chem.
 A, 2015, 3, 20767-20771.
- 3 Y. Ge, H. Jiang, K. Fu, C. Zhang, J. Zhu, C. Chen, Y. Lu, Y. Qiu and X. Zhang, Copper-doped Li₄Ti₅O₁₂/carbon nanofiber composites as anode for highperformance sodium-ion batteries, J. Power Sources, 2014, **272**, 860-865.
- 4 M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, Carbon-Confined SnO₂-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material, ACS Appl. Mater. Interfaces, 2015, 7, 18387-18396.
- 5 S. Xu, S. Zhang, J. Zhang, T. Tan and Y. Liu, A maize-like FePO₄@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique, J. Mater. Chem. A, 2014, 2, 7221-7228.
- 6 X. Li, A. L. Hector, J. R. Owen and S. I. U. Shah, Evaluation of nanocrystalline Sn_3N_4 derived from ammonolysis of $Sn(NEt_2)_4$ as a negative electrode material for Li-ion and Na-ion batteries, J. Mater. Chem. A, 2016, **4**, 5081-5087.

- 7 Y. Ge, H. Jiang, J. Zhu, Y. Lu, C. Chen, Y. Hu, Y. Qiu and X. Zhang, High cyclability of carbon-coated TiO₂ nanoparticles as anode for sodium-ion batteries, Electrochim. Acta., 2015, **157**, 142-148.
- 8 D. Su, S. Dou and G. Wang, Ultrathin MoS₂ Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance, Adv. Energy Mater., 2015, 5, 1401205.