Electronic Supplementary Information

Mesoporous Fe/N/C oxygen reduction catalyst through NaCl

crystallites-confined pyrolysis of polyvinylpyrrolidone

Wang Wang,^a Jin Luo,^a Huiwen Chen, ^aJun Li, ^aWei Xing,^b Shengli Chen,^{a,*}

^aHubei Electrochemical Power Sources Key Laboratory, Department of Chemistry, Wuhan University, Wuhan

430072, China. Tel./Fax: (+86) 27 6875 4693; *E-mail: slchen@whu.edu.cn

^b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese

Academy of Sciences, Changchun, Jilin, 130022, China.

Fig. S1. SEM images of PVP-NaCl-Fe/N/C (a) and PVP-Fe/N/C (b).

Fig. S2. XPS spectra of N 1s in PVP-NaCl-Fe/N/C (a) and PVP-Fe/N/C (b).

Fig. S3. CV of PVP-Fe/N/C and PVP-NaCl-Fe/N/C in O_2 -saturated 0.1 M HClO₄. Scan rate: 100 mV s⁻¹.

Fig. S4. Tafel plots of kinetic current for PVP-Fe/N/C and PVP-NaCl-Fe/N/C.

Fig. S5. (a) ORR polarization curves of PVP-NaCl-Fe/N/C in O_2 -saturated 0.1 M HClO₄ at various rotating speeds. Scan rate: 5 mV s⁻¹. (b) The number of electron transferred for ORR on PVP-NaCl-Fe/N/C calculated from the K-L equation. (c) ORR polarization curves of PVP-Fe/N/C in O_2 -saturated 0.1 M HClO₄ at various rotating speeds. Scan rate: 5 mV s⁻¹. (d) The number of electron transferred for ORR on PVP-Fe/N/C calculated from the K-L equation.

	Catalyst	$E_{1/2}$ in acidic	$E_{1/2}$ in alkaline	
Catalysts	loading/ μg	media (V vs.	media (V vs.	Ref.
	cm ⁻²	RHE)	RHE)	
PVP-NaCl-Fe/N/C	500	0.793	0.878	This work
CNT/(N–C)-800	500	-	0.848	1
C-N-Co	600	0.79	-	2
NP-HPC	200	-	0.83	3
FePPyC-900	400	0.740	0.877	4
Fe-N-CC	100	~0.60	0.83	5
Co-N-C	283 (alkaline), 600 (acid)	0.761	0.841	6

Table S1. RDE performance comparison of non-precious metal catalysts for ORR.

Reference for Table S1

- 1. J.-C. Li, S.-Y. Zhao, P.-X. Hou, R.-P. Fang, C. Liu, J. Liang, J. Luan, X.-Y. Shan and H.-M. Cheng, *Nanoscale*, 2015, **7**, 19201-19206.
- H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng and K. Müllen, J. Am. Chem. Soc, 2013, 135, 16002-16005.
- Y.-P. Zhu, Y. Liu, Y.-P. Liu, T.-Z. Ren, G.-H. Du, T. Chen and Z.-Y. Yuan, *J. Mater. Chem. A*, 2015, 3, 11725-11729.
- 4. T.-N. Tran, M. Y. Song, K. P. Singh, D.-S. Yang and J.-S. Yu, *J. Mater. Chem. A*, 2016, **4**, 8645-8657.
- 5. G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M.-M. Titirici, *ACS Nano*, 2016.
- 6. B. You, N. Jiang, M. Sheng, W. S. Drisdell, J. Yano and Y. Sun, ACS Catal, 2015, 5, 7068-7076.