## **Supporting Information**

# Efficient Water Oxidation through Strongly Coupled Graphitic C<sub>3</sub>N<sub>4</sub> Coated Cobalt Hydroxide Nanowires

Muhammad Tahir<sup>a,b</sup>, Nasir Mahmood<sup>c</sup>, Lun Pan<sup>a</sup>, Zhen-Feng Huang<sup>a</sup>, ZheLv<sup>a</sup>, Jingwen Zhang<sup>a</sup>, Faheem. K. Butt<sup>b</sup>, Guoqiang Shen<sup>a</sup>, Xiangwen Zhang<sup>a</sup>, Shi Xue Dou<sup>c</sup> and Ji-Jun Zou<sup>a\*</sup>

 [a] Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University;
Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

\*E-mail: jj\_zou@tju.edu.cn

[b] Department of Physics, The University of Lahore, 1-Km Raiwind Road, Lahore 53700, Pakistan

[c] Institute of Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.



Figure S1 HRTEM image of Co(OH)<sub>2</sub> NWs.



Figure S2 TEM image of Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-2 NW.



Figure S3 TEM image of Co(OH)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> NW.



**Figure S4** HRTEM image of  $Co(OH)_2/g-C_3N_4$  NW.



Figure S5 STEM image of Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-5 NW.



Figure S6 N<sub>2</sub> adsorption isotherms of Co(OH)<sub>2</sub>, Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-2, Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-5 and Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-7 NWs.



Figure S7 Pore Radius of  $Co(OH)_2$ ,  $Co(OH)_2@g-C_3N_4-2$ ,  $Co(OH)_2@g-C_3N_4-5$  and  $Co(OH)_2@g-C_3N_4-7$  NWs.



Figure S8 OER close view of the samples.



Figure S9 OER close view of the samples.



Figure S10 Over-potential of all the samples.



Figure S11 Nyquist plots of Co(OH)<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>, Co(OH)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> and Co(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>-5.

### Table S1: Samples Names

| Sample Name                                             | g- $C_3N_4$ nanosheets (%) |  |
|---------------------------------------------------------|----------------------------|--|
| Co(OH) <sub>2</sub> @g-C <sub>3</sub> N <sub>4</sub> -2 | 2                          |  |
| Co(OH) <sub>2</sub> @g-C <sub>3</sub> N <sub>4</sub> -5 | 5                          |  |
| Co(OH) <sub>2</sub> @g-C <sub>3</sub> N <sub>4</sub> -7 | 7                          |  |
| Co(OH) <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub>    | 5                          |  |

| Sample Name                     | Potentials (V) at 10 | Over-potentials (V) at |
|---------------------------------|----------------------|------------------------|
|                                 | mA/cm <sup>2</sup>   | 10 mA/cm <sup>2</sup>  |
| g-C <sub>3</sub> N <sub>4</sub> | 1.74                 | 0.51                   |
| $Co(OH)_2@g-C_3N_4$             |                      |                        |
|                                 | 1.73                 | 0.5                    |
| $Co(OH)_2@g-C_3N_4-2$           |                      |                        |
|                                 | 1.57                 | 0.34                   |
| $Co(OH)_2@g-C_3N_4-5$           |                      |                        |
|                                 | 1.55                 | 0.32                   |
| $Co(OH)_2/g-C_3N_4-7$           |                      |                        |
|                                 | 1.58                 | 0.35                   |
| $Co(OH)_2/g-C_3N_4$             |                      |                        |
|                                 | 1.66                 | 0.43                   |
| RuO <sub>2</sub>                | 1.58                 | 0.35                   |
| IrO <sub>2</sub>                | 1.65                 | 0.42                   |
| *Pt/C                           | 2                    | 0.77                   |

Table S2: OER potentials of all catalyst along with IrO<sub>2</sub>, RuO<sub>2</sub> and Pt.

\*Pt/C did not reach at 10mA/cm<sup>2</sup>, so we extrapolate.

### Table S3: OER comparison with some best reported results in alkaline solution with

| Materials                                               | Potential@10mA/cm <sup>2</sup><br>(RHE) | References |
|---------------------------------------------------------|-----------------------------------------|------------|
| PCN-CFP                                                 | 1.63                                    | S[1]       |
| N-dopedgraphene/CNT                                     | 1.63                                    | S[2]       |
| H-Pt/CaMnO <sub>3</sub>                                 | 1.8                                     | S[3]       |
| $Mn_xO_y/N$ -doped carbon                               | 1.68                                    | S[4]       |
| Co <sub>3</sub> O <sub>4</sub> /N-doped-graphene        | 1.54                                    | S[5]       |
| CaMn <sub>4</sub> O <sub>x</sub>                        | 1.77                                    | S[6]       |
| Co <sub>3</sub> O <sub>4</sub>                          | 1.68                                    | S[4]       |
| Co <sub>x</sub> O <sub>y</sub> / N-doped carbon         | 1.66                                    | S[4]       |
| Ni <sub>x</sub> O <sub>y</sub> /N-doped carbon          | 1.64                                    | S[4]       |
| NCNTFs                                                  | 1.6                                     | S[7]       |
| Co@Co <sub>3</sub> O <sub>4</sub> /NC                   | 1.64                                    | S[8]       |
| Co/NC                                                   | 1.69                                    | S[8]       |
| NiO                                                     | 1.66                                    | S[9]       |
| Ni(OH) <sub>2</sub>                                     | 1.59                                    | S[9]       |
| α-Ni(OH) <sub>2</sub> sphere                            | 1.56                                    | S[10]      |
| β-Ni(OH) <sub>2</sub> plate                             | 1.67                                    | S[10]      |
| 3D g-C <sub>3</sub> N <sub>4</sub> NS–CNT               | 1.6                                     | S[11]      |
| Co(OH) <sub>2</sub> @g-C <sub>3</sub> N <sub>4</sub> -5 | 1.55                                    | This Work  |

similar mass loading.

#### **References:**

[1] T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Angewandte Chemie International Edition, 54 (2015) 4646-4650.

[2] G.-L. Tian, M.-Q. Zhao, D. Yu, X.-Y. Kong, J.-Q. Huang, Q. Zhang, F. Wei, Small, 10 (2014) 2251-2259.

[3] X. Han, F. Cheng, T. Zhang, J. Yang, Y. Hu, J. Chen, Advanced Materials, 26 (2014) 2047-2051.

[4] J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler, W. Schuhmann, Angewandte Chemie International Edition, 53 (2014) 8508-8512.

[5] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat Mater, 10 (2011) 780-786.

[6] Y. Gorlin, T.F. Jaramillo, Journal of the American Chemical Society, 132 (2010) 13612-13614.

[7] B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nature Energy, 1 (2016) 15006.

[8] B. Li, X. Ge, F.W. Goh, T.S. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, Nanoscale, 7 (2015) 1830-1838.

[9] X.-Y. Yu, Y. Feng, B. Guan, X.W. Lou, U. Paik, Energy Environ. Sci., (2016).

[10] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J Am Chem Soc, 136 (2014) 7077-7084.

[11] T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew Chem Int Ed Engl, 53 (2014) 7281-7285.