Supporting Information

Upcycling of nonporous coordination polymers: controllableconversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater battery

Sungeun Jeoung,^a Sun Hye Sahgong,^b Jae Hyung Kim,^b Soo Min Hwang,^{*b} Youngsik Kim^b and Hoi Ri Moon^{*a}

^aDepartment of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^bDepartment of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

* E-mail: smhwang@unist.ac.kr; hoirimoon@unist.ac.kr

Compound	ZnCP _{azo} -1
formula	$Zn_4C_{104}N_{24}O_{20}H_{88}$
crystal system	Triclinic
space group	P-1
fw	2255.46
<i>a</i> , Å	15.014(3)
<i>b,</i> Å	18.539(4)
<i>c</i> , Å	19.763(4)
α, deg	89.57(3)
β , deg	78.43(3)
γ, deg	70.48(3)
<i>V</i> , Å ³	5068(2)
Ζ	2
ρ_{calcd} , g cm ⁻³	1.478
temp , K	173(2)
λ, Å	0.69999
μ, mm ⁻¹	1.019
goodness-of-fit (F ²)	1.084
<i>F</i> (000)	2320
reflections collected	49468
independent reflections	22567 [$R(int) = 0.0488$]
completeness to θ_{max} , %	98.8
data/parameters/restraints	22567/1369/0
θ range for data collection, deg	3.01-27.48
diffraction limits (h, k, l)	$-19 \le h \le 19, -23 \le k \le 24, -25 \le l \le 25$
refinement method	Full-matrix least-squares on F^2
$R_1, wR_2 \left[I > 2\sigma(I)\right]$	$0.0499^a, 0.1367^b$
R_1 , wR_2 (all data)	$0.0906^a, 0.1693^b$
largest peak, hole, eÅ ⁻³	0.755, -0.693

 Table S1. X-ray crystallographic data of ZnCP_{azo}-1.

 $\overline{{}^{a}R = \Sigma ||Fo| - |Fc||/\Sigma|Fo|} \cdot {}^{b}wR(F^{2}) = [\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2} \text{ where } w = 1/[\sigma^{2}(Fo^{2}) + (0.0573P)^{2} + (0.0000)P], P = (Fo^{2} + 2Fc^{2})/3.$

Zn(1)-O(1)	2.077(3)	Zn(1)-O(2)	2.087(3)
Zn(1)-O(3)	2.046(3)	Zn(1)-O(11) ^{#1}	2.173(2)
Zn(1)#4-O(11)	2.173(2)	Zn(1)-N(1)	2.198(4)
Zn(1)-N(4)	2.209(3)	Zn(2)-O(7)	2.023(3)
Zn(2)-O(9) ^{#2}	2.081(3)	Zn(2)-O(5)	2.120(3)
Zn(2)-N(7)	2.188(4)	Zn(2)-N(10)	2.193(4)
Zn(2)-O(6)	2.287(3)	Zn(2)-C(4)	2.551(4)
Zn(2) ^{#2} -O(9)	2.081(3)	Zn(3)-O(12)	2.014(3)
Zn(3)-O(14) ^{#3}	2.036(3)	Zn(3)-O(16)	2.045(3)
Zn(3)-N(13)	2.217(4)	Zn(3)-N(16)	2.264(4)
Zn(3) ^{#3} -O(14)	2.173(2)	Zn(4)-O(18)	2.047(3)
Zn(4)-O(19)	2.087(3)	Zn(4)-O(8)	2.100(3)
Zn(4)-O(20)	2.100(3)	Zn(4)-N(19)	2.188(4)
Zn(4)-N(22)	2.200(4)		
O(3)-Zn(1)-O(1)	175.28(12)	O(3)-Zn(1)-O(2)	94.55(10)
O(1)-Zn(1)-O(2)	87.20(10)	O(3)-Zn(1)-O(11) ^{#1}	99.40(10)
O(1)-Zn(1)-O(11) ^{#1}	79.20(10)	O(2)-Zn(1)-O(11) ^{#1}	165.52(10)
O(3)-Zn(1)-N(1)	87.78(12)	O(1)-Zn(1)-N(1)	87.78(13)
O(2)-Zn(1)-N(1)	91.70(13)	O(11)#1-Zn(1)-N(1)	92.70(12)
O(3)-Zn(1)-N(4)	88.91(12)	O(1)-Zn(1)-N(4)	95.52(12)
O(2)-Zn(1)-N(4)	88.81(12)	$O(11)^{\#1}$ -Zn(1)-N(4)	87.60(11)
N(1)-Zn(1)-N(4)	176.69(13)	O(7)-Zn(2)-O(9) ^{#2}	103.27(10)
O(7)-Zn(2)-O(5)	172.45(10)	O(9) ^{#2} -Zn(2)-O(5)	84.10(10)
O(7)-Zn(2)-N(7)	92.67(12)	O(9) ^{#2} -Zn(2)-N(7)	91.68(13)
O(5)-Zn(2)-N(7)	88.70(12)	O(7)-Zn(2)-N(10)	92.00(12)
O(9) ^{#2} -Zn(2)-N(10)	90.87(13)	O(5)-Zn(2)-N(10)	86.18(12)
N(7)-Zn(2)-N(10)	174.02(13)	O(7)-Zn(2)-O(6)	113.51(10)
O(9) ^{#2} -Zn(2)-O(6)	143.20(10)	O(5)-Zn(2)-O(6)	59.10(9)

Table S2. Selected bond distances (Å) and angles (deg) of ZnCP_{azo}-1.

N(7)-Zn(2)-O(6)	87.91(13)	N(10)-Zn(2)-O(6)	86.81(13)
O(7)- $Zn(2)$ - $C(4)$	143.30(11)	O(9) ^{#2} -Zn(2)-C(4)	113.39(11)
O(5)-Zn(2)-C(4)	29.28(11)	N(7)-Zn(2)-C(4)	88.11(13)
N(10)-Zn(2)-C(4)	85.91(13)	O(6)-Zn(2)-C(4)	29.81(10)
O(12)-Zn(3)-O(14) ^{#3}	106.94(10)	O(12)-Zn(3)-O(16)	159.54(10)
O(14) ^{#3} -Zn(3)-O(16)	93.52(11)	O(12)-Zn(3)-N(13)	95.98(12)
O(14) ^{#3} -Zn(3)-N(13)	89.23(12)	O(16)-Zn(3)-N(13)	84.01(13)
O(12)-Zn(3)-N(16)	93.33(12)	O(14) ^{#3} -Zn(3)-N(16)	87.08(13)
O(16)-Zn(3)-N(16)	87.61(13)	N(13)-Zn(3)-N(16)	170.63(12)
O(18)-Zn(4)-O(19)	96.88(11)	O(18)-Zn(4)-O(8)	98.10(10)
O(19)-Zn(4)-O(8)	164.84(10)	O(18)-Zn(4)-O(20)	176.40(13)
O(19)-Zn(4)-O(20)	84.34(11)	O(8)-Zn(4)-O(20)	80.56(11)
O(18)-Zn(4)-N(19)	87.33(13)	O(19)-Zn(4)-N(19)	88.59(13)
O(8)-Zn(4)-N(19)	89.86(12)	O(20)-Zn(4)-N(19)	89.32(13)
O(18)-Zn(4)-N(22)	89.10(13)	O(19)-Zn(4)-N(22)	91.96(13)
O(8)-Zn(4)-N(22)	90.52(13)	O(20)-Zn(4)-N(22)	94.25(13)
N(19)-Zn(4)-N(22)	176.43(13)		

Symmetry transformation used to generate equivalent atoms: ^{#1}, x, y+1, z; ^{#2}, -x+1, -y+1, -z+2; ^{#3}, -x+1, -y, -z+1; ^{#4}, x, y-1, z.

Compound	ZnCP _{azo} -2
formula	$Zn_1C_{19}N_3O_4H_{13}$
crystal system	Monoclinic
space group	$P2_1/c$
fw	412.69
<i>a</i> , Å	12.076(2)
b, Å	10.117(2)
<i>c</i> , Å	15.042(3)
α, deg	90
β , deg	111.41(3)
γ, deg	90
<i>V</i> , Å ³	1710.9(7)
Ζ	4
$ ho_{calcd}$, g cm ⁻³	1.602
temp , K	100(2)
λ, Å	0.700
μ, mm ⁻¹	1.407
goodness-of-fit (F^2)	1.144
<i>F</i> (000)	840
reflections collected	13700
independent reflections	5565 [$R(int) = 0.0744$]
completeness to θ_{max} , %	94.9
data/parameters/restraints	5565/245/0
θ range for data collection, deg	1.78-33.33
diffraction limits (h, k, l)	$-17 \le h \le 14, -12 \le k \le 13, -21 \le l \le 21$
refinement method	Full-matrix least-squares on F^2
$R_1, wR_2 \left[I > 2\sigma(I)\right]$	$0.0429^a, 0.1160^b$
R_1 , wR_2 (all data)	$0.0525^a, 0.1293^b$
largest peak, hole, eÅ ⁻³	1.249, -1.597

Table S3. X-ray crystallographic data of ZnCP_{azo}-2.

 $\overline{{}^{a}R = \Sigma ||Fo| - |Fc||/\Sigma|Fo|} \cdot {}^{b}wR(F^{2}) = [\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2} \text{ where } w = 1/[\sigma^{2}(Fo^{2}) + (0.0573P)^{2} + (0.0000)P], P = (Fo^{2} + 2Fc^{2})/3.$

Zn(1)#3-O(2)	1.9911(11)	Zn(1)-O(3)	1.9448(11)
Zn(1)-O(1)	1.9586(11)	Zn(1)-O(2) ^{#3}	1.9911(11)
Zn(1)-N(1)	2.0078(14)	O(1)-C(1)	1.2641(15)
O(3)-C(5)	1.2922(19)	O(4)-C(5)	1.2384(19)
O(3)-Zn(1)-O(1)	114.30(5)	O(3)-Zn(1)-O(2) ^{#3}	100.75(5)
O(1)-Zn(1)-O(2) ^{#3}	114.32(5)	C(1)-O(2)-Zn(1) ^{#3}	128.08(9)
O(1)-Zn(1)-N(1)	99.12(4)	O(2) ^{#3} -Zn(1)-N(1)	97.43(5)
C(1)-O(1)-Zn(1)	128.44(9)	C(5)-O(3)-Zn(1)	105.01(9)
C(13)-N(1)-Zn(1)	120.42(9)	C(9)-N(1)-Zn(1)	121.19(9)
O(3)-Zn(1)-N(1)	130.18(5)		

Table S4. Selected bond distances (Å) and angles (deg) of ZnCP_{azo}-2.

Symmetry transformation used to generate equivalent atoms: ^{#1}, -x+2, -y, -z+1; ^{#2}, -x+1, -y+1, -z+1; ^{#3}, -x+1, -y, -z+1.

Sample Name	$\frac{S_{BET}{}^a}{(m^2 g^{-1})}$	V _{tot} ^b (cc g ⁻¹)	V _{meso} ^c (cc g ⁻¹)	V _{micro} ^d (cc g ⁻¹)
Converted material at 750 °C	1195	0.68	0.28	0.40
Converted material at 1000 °C	1334	0.70	0.24	0.46
ZnCP _{azo} -2	1.720	0.003	0.002	0.001

Table S5. Summary of nitrogen adsorption of $ZnCP_{azo}$ -2 and thermally converted materials of $ZnCP_{azo}$ -2.

 a The specific surface area (S_{BET}) was calculated by Brunauer-Emmet-Teller (BET) method.

^b V_{tot} represented the total pore volume at $P/P_0 = 0.99$.

 $^{\rm c}$ The mesopore volume (V $_{\rm meso}$) was determined by applying Barrett-Joyner-Halenda (BJH) analysis.

 $^{\rm d}$ The micropore volume (V $_{\rm micro}$) was obtained by substracting the mesopore volume from total pore volume.

Figure S1. XRPD patterns of $ZnCP_{azo}$ -1: measured pattern of as-synthesized $ZnCP_{azo}$ -1 and simulated pattern from the single-crystal X-ray diffraction data.

Figure S2. Nitrogen adsorption-desorption isotherm of ZnCP_{azo}-1.

Figure S3. TGA trace of $ZnCP_{azo}$ -1 obtained under a nitrogen atmosphere with 5 °C/min ramping rate. The result indicated 3.2% weight loss at 100 °C for one coordinating water (clac. 3.2%).

Figure S4. XRPD patterns of PNC-750, -850, and -1000.

Figure S5. Single-crystal X-ray structure of $ZnCP_{azo}$ -2 (a), (b) The coordination modes of the BDC²⁻ and pyridines. (c) Structure projected along the b-axis, showing nonporous framework. Hydrogen atoms are omitted for clarity. Color scheme: C, gray; O, red; N, blue; and Zn, purple.

Figure S6. XRPD patterns of $ZnCP_{azo}$ -2: measured pattern of as-synthesized $ZnCP_{azo}$ -2 and simulated pattern from the single-crystal X-ray diffraction data.

Figure S7. Nitrogen adsorption-desorption isotherm of ZnCP_{azo}-2.

Figure S8. Nitrogen adsorption-desorption isotherm of thermally converted materials of $ZnCP_{azo}$ -2.

Figure S9. BJH pore size distribution curves of thermally converted materials of ZnCP_{azo}-2.