Supporting Information

Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX₂, M= V, Nb, Ta; X=S, Se, Te)

Xinyi Chia,^a Adriano Ambrosi,^a Petr Lazar,^b Zdeněk Sofer^c Martin Pumera^{*a}

^a Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
^b Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 771 46 Olomouc, Czech Republic.

^c Department. of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.

Fig. S1 EDS spectrum of VS_2 , VSe_2 , VTe_2 , NbS_2 , $NbSe_2$, $NbTe_2$, TaS_2 , $TaSe_2$ and $TaTe_2$.

TMD	V at.%	Nb at. %	Ta at. %	S at. %	Se at. %	Te at. %	C at. %	O at. %	Al at. %	Cl at. %	Si at. %
VS ₂	19.55	-	-	33.02	-	-	22.50	24.79	0.15	-	-
VSe ₂	14.10	-	-	-	22.65	-	36.94	25.93	-	-	0.39
VTe ₂	29.07	-	-	-	-	44.67	25.20	-	0.96	-	-
NbS2	-	10.77	-	19.53	-	-	60.26	7.74	-	0.19	1.51
NbSe ₂	-	9.97	-	-	17.08	-	63.30	9.35	-	-	-
NbTe ₂	-	17.68	-	-	-	32.06	37.90	11.45	0.91	-	-
TaS2	-	-	13.42	23.53	-	-	53.86	9.19	-	-	-
TaSe2	-	-	9.73	-	17.84	-	61.08	11.35	-	-	-
ТаТе	-	-	12.72	-	-	26.71	35.72	23.89	0.96	-	-

	Samplo	Chalcogon/Motal Patio	
spectroscopy.			
Table S2 Chalcogen-to-m	etal ratios of Group	5 TMDs based on energy-disp	ersive X-ray

Sample	Chalcogen/Metal Ratio
VS ₂	1.7
VSe ₂	1.6
VTe ₂	1.5
NbS ₂	1.8
NbSe ₂	1.7
NbTe ₂	1.8
TaS₂	1.8
TaSe₂	1.8
TaTe₂	2.1

Fig. S2 Scanning electron micrographs and corresponding energy-dispersive X-ray maps of the various Group 5 TMDs.

Fig. S3 Wide scan XPS spectra of VS₂, VSe₂, VTe₂, NbS₂, NbSe₂, NbTe₂, TaS₂, TaSe₂ and TaTe₂.

Fig. S4 High resolution X-ray photoelectron spectra of S 2p, Se 3d and Te 3d regions of the Group 5 TMDs. The deconvoluted peaks correspond to the numerous oxidation states of S, Se and Te.

Table S3.1 Tabulated chalcogen-to-metal ratios of VS_2 , VSe_2 and VTe_2 based on high resolution Xray photoelectron spectroscopy, with estimated distributions of the various oxidation states of vanadium after deconvolution of the V 2p peaks.

Sample	Sample V(0) V(II)		V(III)	V(IV)	V(V)	Chalcogen/Metal
						Ratio
VS ₂	10.0	17.4	10.9	46.6	15.1	1.1
VSe ₂	3.4	19.7	16.6	28.1	32.2	1.1
VTe ₂	8.2	16.9	18.4	24.4	32.1	2.0

Table S3.2 Tabulated chalcogen-to-metal ratios of NbS_2 , $NbSe_2$ and $NbTe_2$ based on high resolution X-ray photoelectron spectroscopy, with estimated distributions of the various oxidation states of niobium after deconvolution of the high resolution Nb 3d peaks.

Sample	ple Nb(0) Nb(I)		Nb(II)	Nb(IV)	Nb(V)	Chalcogen/Metal
						Ratio
NbS ₂	1.5	16.5	40.0	18.8	23.2	1.6
NbSe₂	4.7	0.1	3.7	32.3	59.2	0.9
NbTe ₂	4.5	2.8	7.5	44.9	40.3	3.0

Table S3.3 Tabulated chalcogen-to-metal ratios of TaS_2 , $TaSe_2$ and $TaTe_2$ based on high resolution X-ray photoelectron spectroscopy, with estimated distributions of the various oxidation states of tantalum after deconvolution of the high resolution Ta 4f peaks.

Sample	Ta(0)	Ta(I)	Ta(II)	Ta(IV)	Ta(V)	Chalcogen/Metal
						Ratio
TaS ₂	1.0	16.1	14.7	40.2	28.0	1.1
TaSe ₂	2.1	12.0	9.8	63.8	12.3	1.0
TaTe ₂	1.5	9.5	1.8	64.0	23.2	2.6

Table S4 Estimated distributions of the various oxidation states of vanadium after deconvolution of the high resolution V 2p peaks and O 1s peaks based on XPS.

Sample	V(0)	V(II)	V(III)	V(IV)	V(V)	O 1s
VS ₂	4.2	7.4	4.6	19.9	6.5	57.4
VSe ₂	1.4	7.8	6.6	11.2	12.9	60.1
VTe ₂	2.8	5.8	6.3	8.3	10.9	65.9

Sample	V 2p	Nb 3d	Ta 4f	S 2p	Se 3d	Te 3d	C 1s	O 1s
VS ₂	6.2	-	-	29.9	-	-	27.6	36.3
VSe ₂	3.3	-	-	-	30.4	-	35.8	30.5
VTe ₂	1.1	-	-	-	-	14.2	30.4	54.3
NbS ₂	-	24.3	-	37.2	-	-	15.5	23.0
NbSe ₂	-	19.1	-	-	19.0	-	24.8	37.1
NbTe ₂	-	10.3	-	-	-	10.3	56.4	23.0
TaS₂	-	-	20.8	18.0	-	-	29.4	31.8
TaSe₂	-	-	18.5	-	18.5	-	27.7	35.3
TaTe₂	-	-	13.6	-	-	10.7	27.0	48.7

Table S5 Elemental compositions Group 5 TMDs based on wide-scan X-ray photoelectron spectroscopy.

Fig. S5 Cyclic voltammograms of a) V_2O_5 during anodic scan and b) cathodic scan, c) Nb₂O₅ during anodic scan and d) cathodic scan, e) Ta₂O₅ during anodic scan and f) cathodic scan. Conditions: background electrolyte PBS (50 mM) pH 7.0; scan rate, 100 mV s⁻¹; scans begin at 0.0 V *vs.* Ag/AgCl. The arrows denote initial scan direction.

Fig. S6 Summary of peak-to-peak separations of all Group 5 TMDs with their corresponding error bars. Conditions: background electrolyte, KCl (0.1 M); scan rate, 100 mV s⁻¹; all measurements are performed relative to Ag/AgCl reference electrode.

Table S6 Table of heterogeneous	electron transfer (HET) rate c	onstant, k^0_{obs} , for all the Group	5
TMDs. The k^0_{obs} of the bare glassy	v carbon electrode is also com	puted as a basis for comparison	n.

Material	k ⁰ _{obs} (cm s ⁻¹)
VS ₂	8.41× 10 ⁻⁴
VSe ₂	1.43 × 10 ⁻³
VTe ₂	9.61 × 10 ⁻⁴
NbS₂	1.06×10^{-3}
NbSe ₂	2.75×10^{-3}
NbTe ₂	4.95×10^{-4}
TaS ₂	3.39×10^{-3}
TaSe₂	1.50×10^{-3}
TaTe₂	5.65 × 10 ⁻⁴
GC	1.29 × 10 ⁻³

Fig. S7 Linear sweep profiles of hydrogen evolution reaction (HER) on GC electrodes modified with a) VS₂, NbS₂ and TaS₂, c) VSe₂, NbSe₂ and TaSe₂ and e) VTe₂, NbTe₂ and TaTe₂. Tafel plots for HER corresponding to b) VS₂, NbS₂ and TaS₂, d) VSe₂, NbSe₂ and TaSe₂ and f) VTe₂, NbTe₂ and TaTe₂. Histograms summarize the averages of g) HER overpotential at current density of -10 mA cm⁻² and h) Tafel slopes for all the materials. Conditions: background electrolyte, H₂SO₄ (0.5 M); scan rate, 2 mV s⁻¹.

Material	<i>j</i> (mA cm ⁻²)
VS ₂	3.80 × 10 ⁻⁵
VSe ₂	1.89×10^{-5}
VTe ₂	1.83×10^{-7}
NbS ₂	1.20 × 10 ⁻³
NbSe ₂	9.03 × 10 ⁻⁵
NbTe ₂	7.90×10^{-4}
TaS ₂	1.71 × 10 ⁻⁴
TaSe₂	1.78×10^{-5}
TaTe ₂	1.47×10^{-4}
Pt/C	6.20 × 10 ⁻²

Table S7 Table of exchange current density, j, for all the Group 5 TMDs. The j of the Pt/C is also computed as a basis for comparison.

Fig. S8 Polarisation curves demonstrating the effect of subsequent scans on the HER pre-waves of a) VSe_2 , b) NbS_2 , c) $NbSe_2$ and d) $NbTe_2$. Conditions: background electrolyte, H_2SO_4 (0.5 M); scan rate, 2 mV s⁻¹.

Fig. S9 Polarisation curves demonstrating the effect of subsequent scans with the absent or diminished HER pre-wave on the HER trends of Group 5 TMDs. Linear sweep profiles of hydrogen evolution reaction (HER) on GC electrodes modified with a) VS_2 , VSe_2 and VTe_2 and b) NbS_2 , $NbSe_2$ and $NbTe_2$. All Group 5 TMDs shown are first scans with the exception of VSe_2 , NbS_2 , $NbSe_2$ and $NbTe_2$ whereby their 2^{nd} scans are used. Conditions: background electrolyte, H_2SO_4 (0.5 M); scan rate, 2 mV s^{-1} .

Fig. S10 Polarisation curves demonstrating the effect of subsequent scans with the absent or diminished HER pre-wave on the HER trends of Group 5 TMDs. Linear sweep profiles of hydrogen evolution reaction (HER) on GC electrodes modified with a) VS₂, NbS₂ and TaS₂, b) VSe₂, NbSe₂ and TaSe₂ and c) VTe₂, NbTe₂ and TaTe₂. All Group 5 TMDs shown are first scans with the exception of VSe₂, NbS₂, NbSe₂ and NbTe₂ whereby their 2^{nd} scans are used. Conditions: background electrolyte, H₂SO₄ (0.5 M); scan rate, 2 mV s⁻¹.

Fig. S11 HER polarisation curves of all Group 5 TMDs before and after 100 cyclic voltammetry cycles in sulfuric acid. Conditions: background electrolyte, H₂SO₄ (0.5 M); scan rate, 2 mV s⁻¹.

Fig. S12 Cyclic voltammograms of all Group 5 TMDs to examine catalytic stability in acid. Conditions: background electrolyte, H_2SO_4 (0.5 M); scan rate, 100 mV s⁻¹.

Fig. S13 The geometry (left panels) of the two hydrogen atoms (in violet) adsorbed on the Ta-edge of TaS_2 (upper panel), and single hydrogen atom adsorbed on the Ta-edge of $TaSe_2$. The panels on the right panels show the electron localization function (ELF) of respective geometry and the ELFs are cut through S-H and Se-H bond.

Fig. S14 The electronic band-structure of the TaS_2 nanowire (left) and the $TaSe_2$ nanowire (right). The nanowire exposes both the Ta-edge and the S-edge. The TaS_2 nanowire becomes spin-polarized, whereas $TaSe_2$ is nonmagnetic. The green lines show the band structure of single-layer TaS_2 and $TaSe_2$ (without any edge).