Electronic Supplementary Information

Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogenevolution electrocatalyst

Zonghua Pu,^a Xue Ya,^b Ibrahim Saana Amiinu,^a Zhenkai Tu,^a * Xiaobo Liu,^a Wenqiang Li,^a and Shichun Mu^a *

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
^b Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637009, P. R. China
E-mail: tzklq@whut.edu.cn; msc@whut.edu.cn.

Fig. S1 Size distribution of WP NPs in WP NPs@NC.

Fig. S2. (A) Low- and (B) high-magnification SEM images of bulk WP. (C) EDX spectrum and (D) XRD pattern of bulk WP.

Fig. S3. The survey XPS spectra of the WP NPs@NC.

Fig. S4. Raman spectrum of the as-prepared WP NPs@NC.

Fig. S5. (A) Tafel plot in the region of low current densities of WP NPs@NC in 0.5 M H₂SO₄. (B) Calculation of exchange current density of WP NPs@NC by applying extrapolation method to the Tafel plot.

Fig. S6. (A) XRD pattern of C-700-4. (B) The survey XPS spectra of the C-700-4. (C-F) The high-resolution XPS spectra of the C-700-4.

Fig. S7. (A) XRD pattern of C-800-2. (B) The survey XPS spectra of the C-800-2. (C-F) The high-resolution XPS spectra of the C-800-2.

Fig. S8. (A) XRD pattern of C-800-8. (B) The survey XPS spectra of the C-800-8. (C-F) The high-resolution XPS spectra of the C-800-8.

Fig. S9. (A) XRD pattern of C-900-4. (B) The survey XPS spectra of the C-900-4. (C-F) The high-resolution XPS spectra of the C-900-4.

Fig. S10. Raman spectra for the C-700-4, C-800-2, C-900-4 and C-800-8.

Fig. S11. CVs for (A) C-700-4, (B) C-800-2, (C) C-800-4, (D) C-800-8 and (E) C-900-4.

Fig. S12. EIS data for WP NPs@NC and bulk WP

Catalyst	Electrolyte	Onset overpoten tial (mV)	Current density (<i>j</i> , mA cm ⁻²)	η at the corresponding j (mV)	Exchange current density (mA cm ⁻²)	Ref.
WP NPs@NC	0.5 M H ₂ SO ₄	40	10	102	0.25	This work
amorphous WP nanoparticles	0.5 M H ₂ SO ₄	-	10	120	-	1
WP ₂ submicroparticles	$0.5 \text{ M H}_2 \text{SO}_4$	54	10	161	0.017	2
WP ₂ nanorods	0.5 M H ₂ SO ₄	56	10	148	0.013	3
WP NAs/CC	0.5 M H ₂ SO ₄	50	10	130	0.29	4

 Table S1. Comparison of HER performance in acidic media for WP NPs@NC with tungsten phosphide-based HER electrocatalyst.

 Table S2. Comparison of HER performance in acidic media for WP NPs@NC with other non-noble-metals HER electrocatalyst.

Catalyst	Electrolyte	Onset overpotential (mV)	Current density (j, mA cm ⁻²)	η at the corresponding j (mV)	Exchange current density (mA cm ⁻²)	Ref.
WP NPs@NC	0.5 M H ₂ SO ₄	40	10	102	0.25	This work
Ni ₂ P hollow nanoparticles	0.5 M H ₂ SO ₄	-	10	116	0.033	5
Ni ₂ P nanoparticles	1.0 M H ₂ SO ₄	46	20	140	-	6
FeP nanosheets	$0.5 \text{ M H}_2\text{SO}_4$	100	10	~240	-	7
CoP/CNT	$0.5 \text{ M H}_2\text{SO}_4$	54	10	122	0.288	8
interconnected						
network of MoP	$0.5 \text{ M H}_2\text{SO}_4$	40	10	125	0.086	9
nanoparticles						
bulk MoP	$0.5 \text{ M H}_2\text{SO}_4$	50	30	180	0.034	10
exfoliated WS ₂ nanosheets	0.5 M H ₂ SO ₄	80-100	10	~220	0.02	11
WS ₂ /graphene	0.5 M H ₂ SO ₄	150-200	10	~270	-	12
WS_2 nanoribbons	$0.5 \text{ M H}_2\text{SO}_4$	-	10	~225	-	13
WS_2 nanoflakes	$0.5 \text{ M H}_2\text{SO}_4$	100	10	~130	-	14
WS_2 nanosheets	$0.5 \text{ M H}_2\text{SO}_4$	75	10	~140	-	15
W ₂ N nanorods	$0.5 \text{ M H}_2\text{SO}_4$	-	10	500	-	16
WO_2	0.5 M H ₂ SO ₄	-	10	58	0.64	17
WO _{2.9}	$0.5 \text{ M H}_2\text{SO}_4$	-	10	70	0.4	18
nanoporous Mo ₂ C nanowires	0.5 M H ₂ SO ₄	70	60	200	-	19
NiMoN _x /C	0.1 M HClO ₄	78	5	220	0.24	20
$Co_{0.6}Mo_{1.4}N_2$	0.1 M HClO ₄	-	10	200	0.23	21
Co-NRCNTs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	50	10	260	0.01	22
CoSe ₂ nanobelts	$0.5 \text{ M H}_2\text{SO}_4$	50	10	~125	8.4×10 ⁻³	23

Catalyst	Electrolyte/pH	Current density (j, mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.
WP NPs@NC	1.0 M PBS	2	118	This
		10	196	work
WP ₂ submicroparticles	1.0 M PBS	2	143	2
WP ₂ nanorods	1.0 M PBS	2	172	3
WP NAs/CC	1.0 M PBS	2	95	4
Co-NRCNTs	0.1 M PBS	2	380	22
FeP/Ti	1.0 M PBS	10	102	24
bulk Mo ₂ C	pH=7	1	200	25
bulk Mo ₂ B	pH=7	1	250	25
H ₂ -CoCat/FTO	0.5 M KPi	2	385	26
Co-S/FTO	1.0 M PBS	2	83	27
CuMoS ₄ crystals	pH=7	2	210	28

Table S3. Comparison of HER performance in neutral media for WP NPs@NC with other non-precious metal HER electrocatalyst.

Catalyst	Electrolyte	Current density (j, mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.	
WD ND ₂ ONC		2	92	This work	
WP INPS@INC	1.0 M КОП	10	150	I IIIS WOLK	
WP ₂ submicroparticles	1.0 M KOH	10	153	2	
WP_2 nanorods	1.0 M KOH	2	149	3	
WP NAs/CC	1.0 M KOH	10	150	4	
Ni ₂ P nanoparticles	1.0 M KOH	20	250	6	
Co-NRCNTs	1.0 M KOH	10	370	22	
bulk Mo ₂ B	1.0 M KOH	1	250	25	
Ni	1.0 M KOH	10	400	25	
Co-S/FTO	1.0 M KOH	1	480	27	
Ni wire	1.0 M NaOH	10	350	29	
Ni-Mo alloy/Ti foil	1.0 M NaOH	10	80	29	

 Table S4. Comparison of HER performance in basic media for WP NPs@NC with other non-precious metal HER electrocatalyst.

References

- J. M. McEnaneya, J. C. Cromptonb, J. F. Callejasa, E. J. Popczuna, C. G. Reada, N. S. Lewis and R. E. Schaak, *Chem. Commun.*, 2014, **50**, 11026-11028.
- 2 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, ACS Catal., 2015, 5, 145-149.
- 3 H. Du, S. Gu, R. Liu and C. Li, J. Power. Sources, 2015, 278, 540-545.
- 4 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.
- 5 E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270.
- 6 L. Feng, H. Vrubel, M. Bensimon and X. Hu, *Phys. Chem. Chem. Phys.*, 2014, 16, 5917-5921.
- 7 Y. Xu, R. Wu, J. Zhang, Y. Shi and B. Zhang, *Chem. Commun.*, 2013, 49, 6656-6658.
- 8 Q. Liu, J. Tian, W. Cui, P. Jaing, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, **126**, 6828-6832.
- 9 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Adv. Mater., 2014, 26, 5702-5707.
- 10 P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Wang, K. H. Lim and X. Wang, *Energy Environ. Sci.*, 2014, 7, 2624-2629.
- D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. Alves, T. Fujita, M. Chen, T. Asefa,
 V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, 12, 850-855.
- 12 J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and S. H. Shin, Angew. Chem. Int. Ed., 2013, 52, 13751-13754.
- 13 J. Lin, Z. Peng, G. Wang, D. Zakhidov, E. Larios, M. J. Yacaman and J. M. Tour, Adv. Energy Mater., 2014, 4, 1301875.
- 14 L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai, Angew. Chem. Int. Ed., 2014, 53, 7860-7863.
- 15 M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. Hamers and S. Jin, *Energy Environ. Sci.*, 2014, **7**, 2608-2613.
- 16 V. Chakrapani, J. Thangala and M. K. Sunkara, Int. J. Hydrogen Energy, 2009,

34, 9050-9059.

- 17 R. Wu, J. Zhang, Y. Shi, D. Liu and B. Zhang, J. Am. Chem. Soc., 2015, 137, 6983-6986.
- 18 Y. Li, P. Liu, L. Pan, H. Wang, Z. Yang, L. Zheng, P. Hu, H. Zhao, G. Liu and H. Yang, *Nat. Commun.*, 2015, 6, 8064.
- 19 L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. Scanlon, X. Hu, Y. Tang, B. Liu and H. Giraultb, *Energy Environ. Sci.*, 2014, 7, 387-392.
- 20 W. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Angew. Chem. Int. Ed.*, 2012, **51**, 6131-6135.
- 21 B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic and P. G. Khalifah, J. Am. Chem. Soc., 2013, 135, 19186-19192.
- 22 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, **126**, 4461-4465.
- Y. Xu, M. Gao, Y. Zheng, J. Jiang and S. Yu, Angew. Chem. Int. Ed., 2013, 52, 8546-8550.
- 24 J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis and R. E. Schaak, ACS Nano, 2014, 8, 11101-11107.
- 25 H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 124, 12875-12878.
- 26 S. Cobo, J. Heidkamp, P. A. Jacques, J. Fize, V. Fourmond, L.Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave and V. Artero, *Nat. Mater.*, 2012, **11**, 802-807.
- 27 Y. Sun, L. Chong, D. Grauer, J. Yano, J. Long, P. Yang and C. Chang, J. Am. Chem. Soc., 2013, 135, 17699-17702.
- P. Tran, M. Nguyen, S. Pramana, A. Bhattacharjee, S. Chiam, J. Fize, M. Field,
 V. Artero, L. Wong, J. Loo and J. Barber, *Energy Environ. Sci.*, 2012, 5, 8912-8916.
- J. McKone, B. Sadtler, C. Werlang, N. S. Lewis and H. Gray, *ACS Catal.*, 2013, 3, 166-169.