Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation

Yuwan Yang,^a Bien Tan*a and Colin D Wood*b

^a School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Email: bien.tan@mail.hust.edu.cn

^b CSIRO, Energy, Australian Resources Research Centre, Kensington, 6151 Western Australia, Australia.

Email: colin.wood@csiro.au

Figure S1 Photographs of insoluble HCP-1 (a) and HCP-2 (c) after filtrating, and small pieces of HCP-1 (b) and HCP-2 (d). Both materials swell in THF (e).

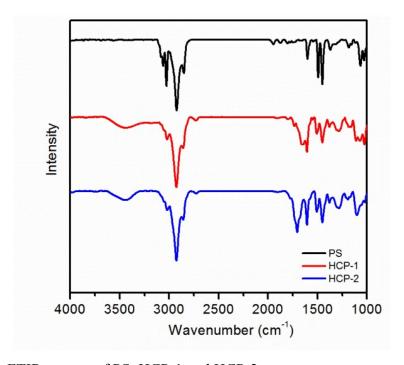
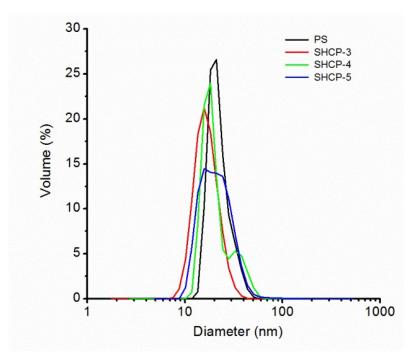
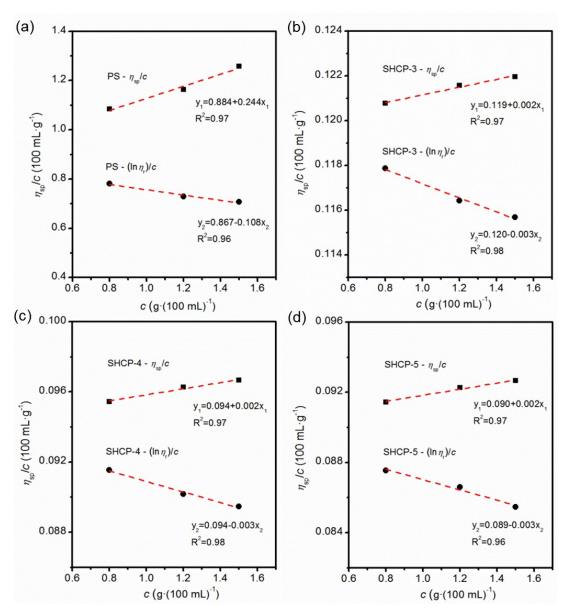
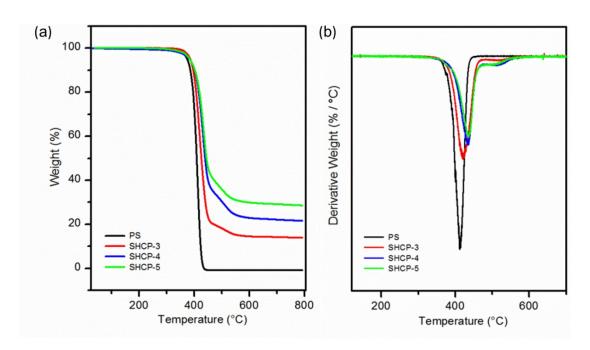


Figure S2 FTIR spectra of PS, HCP-1 and HCP-2.

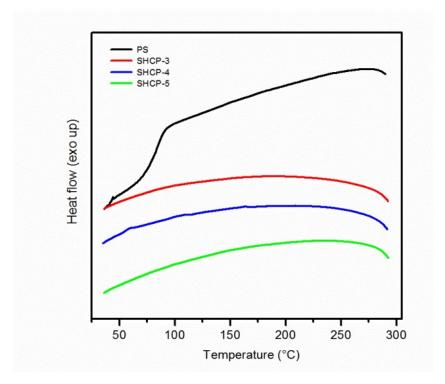

Figure S3 DLS curves of PS and SHCPs. Solvent: tetrahydrofuran.

Figure S4 The intrinsic viscosity of PS and SHCPs. Solvent: tetrahydrofuran.

Figure S5 TG (a) and DTA (b) curves of PS and SHCPs at a heating rate of 10 °C/min under nitrogen atmosphere.

Figure S6 DSC curves of PS and SHCPs at a heating rate of 10 °C/min under nitrogen atmosphere.

Figure S7 SEM image of the HCP-1 (a), HCP-2 (b), SHCP-3 (c), SHCP-4 (d) and SHCP-5 (e), scale bar: 20 μ m (left), 2 μ m (right).

Table S1 Reaction conditions for HCPs and SHCPs. The total volume of solvent was 450 mL in each reaction, for samples 3, 4 and 5 the cross-linker (FDA) was slowly added in a 50 mL solution.

Sample	PS	FDA	FeCl ₃	S _{BET} ^{a)}
	(g)	(µL)	(g)	(m^2g^{-1})
HCP-1	0.10	270	1.22	981
HCP-2	0.22	580	1.08	1125
SHCP-3	0.05	270	0.60	187
SHCP-4	0.52	270	0.60	480
SHCP-5	0.52	500	0.60	724

^{a)}surface area for the complete sample, the surface area for the soluble component is shown in table S2.

Table S2 The weight of sedimentations of SHCPs.

Sample	$M_1{}^{a)} \\$	$M_2^{b)}$	f ^{c)}	$S_{\mathrm{BET}^{\mathrm{d})}$
	(g)	(g)	(%)	$(m^2 g^{-1})$
SHCP-3	0	0.0500	100	158
SHCP-4	0.0110	0.0390	78	355
SHCP-5	0.0353	0.0147	29	530

^{a)}The weight of sedimentations; ^{b)}The weight which dissolved in chloroform; ^{c)} $M_2/(M_1+M_2)$ *100%, weight fractions of soluble part; ^{d)}Apparent surface area of soluble fractions calculated from nitrogen adsorption isotherms at 77.3 K using BET equation.

Table S3 Molecular weight and polydispersity index of SHCPs.

Sample	S _{BET} (m ² g ⁻¹)	$M_{ m w}$	M_n	PDI
PS	0	167700	65600	2.56
SHCP-3	187	145000	65600	2.21
SHCP-4	480	177500	98000	1.81
SHCP-5	724	173300	106500	1.63