Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Excellent energy density of polymer nanocomposites containing BaTiO₃@Al₂O₃ nanofibers induced by moderation interfacial area

Zhongbin Pan^a, Lingmin Yao^b, Jiwei Zhai^{a*}, Bo Shen, Shaohui Liu^a, Haitao Wang^a, and Jinhua Liu^a

^aSchool of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.

^bInstitute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, China

Fig. S1 (a) Schematic of forming process of core-shell structure BT@Al₂O₃ nanofibers;(b) SEM image of the as-electrospun fibers.

Fig. S2 The mapping of core-shell structure BT@Al₂O₃ nanofibers.

Fig. S3 (a) FT-IR spectra (b) XPS spectra of BT nfs, $BT@Al_2O_3$ nfs and $BT@Al_2O_3$ nfs-DA.

IR absorption peaks appears at 3000-3650 cm⁻¹(–OH groups and –NH), 2925 cm⁻¹ and 2854 cm⁻¹(–CH₂), 1626 cm⁻¹(–NH), 1505 cm⁻¹(–C–C) and 1254 cm⁻¹(–C–N), imply that the dopamine have been introduced successfully onto BT@Al₂O₃ nanofibers surface. Two relatively strong peaks at approximately 74.3 and 119.2 eV can be

discovered of the BT@Al₂O₃, corresponding to the Al 2s and Al 2p peaks of Al₂O₃. Compared with BT and BT@Al₂O₃, the peak of N1s is observed BT@Al₂O₃-DA at about 401 eV owing to free $-NH_2$, affirming the successful introduced of dopamine on the BT@Al₂O₃ nanofibers surface.

Fig. S4 Frequency-dependence of the (a) dielectric constant and (b) dielectric loss tangent of BT@Al₂O₃ nfs/PVDF nanocomposites.

Fig. S5 Frequency-dependence of the (a) dielectric constant and (b) dielectric loss tangent of BT nfs/PVDF nanocomposites.

Fig. S6 The leakage current density of (a) BT nfs/PVDF (b) BT@Al₂O₃ nfs/PVDF nanocomposites.

Fig. S7 D-E curves of the 5 vol. % BT nfs/PVDF and BT@Al₂O₃ nfs/PVDF nanocomposites.

Fig. S8 D-E curves of the $BT@Al_2O_3$ nfs/PVDF nanocomposites loading with different concentration of the fillers.