Electronic Supplementary Information

A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates

Yiqiang Wu^{a, b, #}, Shanshan Jia^{a, #}, Yan Qing^{a, b,} *, Sha Luo^a, and Ming Liu^a

^a College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
^b Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004, China
[#] These authors contributed equally to this work and share first authorship.
*E-mail: qingyan0429@163.com

Supporting Figures and Movies

Figure S1. Schematic illustration of the sandpaper abrasion test

Figure S2. Soil and sawdust were used as dirt to test the self-cleaning

effect of the superhydrophobic surface

Figure S3. The as-prepared surface shows both superhydrophobic and superoleophilic properties

Movie S1 Water droplet bouncing test

Movie S2 Various types of abrasion tests including knife-scratching test,

finger-wiping test and brushing test

Movie S3 Self-cleaning test

Figure S1. Schematic illustration of the sandpaper abrasion test

Figure S2. Soil and sawdust were used as dirt to test the self-cleaning effect of the superhydrophobic surface

Figure S3. The as-prepared surface shows both superhydrophobic (left) and superoleophilic properties (right)

