High Performance All-Small-Molecule Solar Cells: Engineering the Nanomorphology via Processing Additives

Jie Min¹*, Oh Kyu Kwon², Chaohua Cui³*, Jung-Hwa Park², Yue Wu³, Soo Young Park²*, Yongfang Li³, Christoph J. Brabec^{1,4}

¹Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany

²Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea.

³Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

⁴Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, Germany

*E-mail: <u>Min.Jie@fau.de</u> (J. Min); <u>cuichaohua@suda.edu.cn</u> (C. H. Cui); <u>parksy@snu.ac.kr</u> (S. Y. Park)

Figure S1. (a) The schematic figure of the energy level alignments; (b) The absorption spectra of BDTT-S-TR and NIDCS-MO in chloroform solutions and in thin films; (c) The absorption spectra of DTBT in chloroform solution and in thin film (Inset: one digital photograph taken through the DTBT compounds). (d) Cyclic voltammograms of DTBT dissolved in 0.1 mol L⁻¹ Bu₄NPF₆ acetonitrile solution at a scan rate of 100 mV s⁻¹.

Compounds	Solution ^a			Film ^b		
	$\overline{\lambda_{\max}(nm)}$	λ_{onset} (nm)	$E_{\rm g}^{\rm opt} ({\rm eV})^{\rm c}$	$\overline{\lambda_{\max}(nm)}$	λ_{onset} (nm)	$E_{\rm g}^{\rm opt} ({\rm eV})^{\rm c}$
BDTT-S-TR	506	605	2.05	588/632	717	1.73
NIDCS-MO	484	555	2.23	496	605	2.05
DTBT	446	511	2.43	487	584	2.12

Table S1. Optical properties of BDTT-S-TR, NIDCS-MO and DTBT molecules.

^{*a*}Measured in chloroform solution. ^{*b*}Cast from ODCB solution. ^{*c*}Bandgap estimated from the onset wavelength (λ_{edge}) of the optical absorption: $E_g^{opt} = 1240/\lambda_{edge}$.

Figure S2. The dark *J-V* characteristics of pristine NIDCS-MO based hole-only and electrononly devices. The solid lines represent the best fitting using the SCLC model. The inset mobility data are the average mobility values obtained from six devices.

D/A ratios	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE ^[a] (%)
1:0.5	1.21	2.52	28.2	0.86 [0.82]
1:0.8	1.12	3.59	27.1	1.09 [0.92]
1:1	1.12	3.10	26.2	0.91 [0.82]
1:1.5	1.10	3.03	26.6	0.89 [0.79]
1:2	1.05	3.03	27.1	0.86 [0.79]

Table S2. Photovoltaic performance parameters of BDTT-TR:NIDCS-MO devices with different D/A weight ratios under the illumination of AM 1.5 G at 100 mW cm⁻².

^aThe values in square bracket are the average PCEs obtained from six devices.

Figure S3. Changes of (a) V_{oc} , (b) J_{sc} , (c) FF and (d) PCE of BDTT-S-TR:NIDCS-MO based devices with different solvent additives as a function of concentration (vol%).

Figure S4. (a) Current density-voltage (*J-V*) characteristics and (b) EQE spectra of the OSCs with MT, NMP, CN, DPE, and BrAni additives under the illumination of an AM 1.5G solar simulator.

Figure S5. Changes of V_{oc} , J_{sc} , FF and PCE of BDTT-S-TR:NIDCS-MO based devices as a function of DTBT concentration (wt%).

Figure S6. Changes of V_{oc} , J_{sc} , FF and PCE of BDTT-S-TR:NIDCS-MO based devices with 0.75% (vol%) DIO as a function of DTBT concentration (wt%).

Figure S7. The dark J-V characteristics of (a) hole-only devices and (b) electron-only devices without and with additives. The solid lines represent the best fitting using the SCLC model.

Figure S8. X-ray diffraction (XRD) patterns of BDTT-S-TR:NIDCS-MO (1:0.8, wt%) films without and with DTBT additive.