Electronic Supplementary Information

General strategy for coating metal-organic frameworks on diverse components and architectures

Gang Huang,^{ab} Dongming Yin^{ab} and Limin Wang^{c*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

*To whom correspondence should be addressed. Email: lmwang@ciac.ac.cn

Fig. S1 FTIR spectra of the untreated CNTs, APTMS modified CNTs and core@shell CNTs@ZIF-8 (fractured) nanowires.

As can be seen in the FTIR spectra (Fig. S1, ESI), a new broad band in the range of 3200–3600 cm⁻¹ emerges after APTMS modification, which is ascribed to the N–H stretching and confirms the amination of core components with APTMS treatment.

Fig. S2 XRD patterns of the as-synthesized core@shell products.

Fig. S3 TEM images of (a and b) CNTs@ZIF-8-0.5 (fractured) and (c and d) CNTs@ZIF-8-2 (fractured) nanowires.

Fig. S4 SEM images of CNTs@ZIF-8 prepared without PSS treatment.

Fig. S5 SEM images of the diverse core components. (a and b) $Ni(OH)_2$ nanowires; (c and d) $LiMn_2O_4$ nanowires; (e and f) Fe_2O_3 nanoplates; (g and h) ZIF-L leaf-like microplates; (I and j) $Ni_3[Co(CN)_6]_2$ nanocubes; (k and l) Fe_2O_3 nanospindles; (l and m) SiO_2 hollow nanospheres and (n and o) RF nanospheres.

Fig. S6 SEM images of (a and b) Ni(OH)₂@ZIF-8 and (c and d) LiMn₂O₄@ZIF-8 nanowires.

Fig. S7 N₂ adsorption-desorption isotherms and the corresponding pore size distributions of (a and b) CNTs@ZIF-8 (fractured) nanowires and (c and d) Ni(OH)₂@ZIF-8 nanowires.

 N_2 sorption isotherms of the CNTs@ZIF-8 (fractured) and Ni(OH)₂@ZIF-8 nanowires are shown in Fig. S7. The observed features of the isotherms resemble type I and IV isotherms with a H3 type hysteresis loop. The sharp uptakes at low pressure imply the presence of micropores from ZIF-8. The distinct hysteresis in the relative pressure region of P/P₀>0.3 underscores the mesopores characteristics, which may arise from the void space between the interconnected nanosized building blocks of fractured shell. The BET surface areas of CNTs@ZIF-8 (fractured) and Ni(OH)₂@ZIF-8 are 1055.8 and 1592.7 m² g⁻¹, respectively. Calculated from the desorption branch using the BJH modal, the average pore size distributions of CNTs@ZIF-8 (fractured) and Ni(OH)₂@ZIF-8 center at 3.705 and 3.715 nm.

Fig. S8 (a and b) SEM images, (c) HAADF-STEM image and (d) elemental mapping of Ni(OH)₂@ZIF-8 (Zn, Co) nanowires.

Fig. S9 SEM images of (a) Fe₂O₃@ZIF-8 nanoplates and (b) ZIF-L@ZIF-8 microplates.

Fig. S10 XRD patterns of Fe₂O₃ and Fe₂O₃@ZIF-8 nanoplates.

Fig. S11 SEM images of 3D core@shell composites. (a and b) $Ni_3[Co(CN)_6]_2@ZIF-8$ nanocubes; (c and d) $Fe_2O_3@ZIF-8$ nanospindles; (e and f) $SiO_2@ZIF-8$ hollow nanospheres and (g and h) RF@ZIF-8 nanospheres.

Fig. S12 SEM images of (a) $Ni(OH)_2@ZIF-67$ nanowires; (b) $LiMn_2O_4@ZIF-67$ nanowires; (c) $SiO_2@ZIF-67$ hollow nanospheres and (d) RF@ZIF-67 nanospheres.

Fig. S13 TEM images of (a) Ni(OH)₂@ZIF-67 nanowires; (b) LiMn₂O₄@ZIF-67 nanowires; (c) SiO₂@ZIF-67 hollow nanospheres and (d) RF@ZIF-67 nanospheres.

Fig. S14 Thermogravimetric analysis curves of (a) CNTs@ZIF-8 (Zn, Co) and (b) Ni(OH)₂@ZIF-8 (Zn, Co) nanowires.

Fig. S15 HRTEM images of (a) CNTs@ZnCo₂O₄ and (b) NiO@ZnCo₂O₄ nanowires.

Fig. S16 N₂ adsorption-desorption isotherms and the corresponding pore size distributions of (a and b) $CNTs@ZnCo_2O_4$ and (c and d) $NiO@ZnCo_2O_4$ nanowires.

 Table S1 The diameter and shell thickness of core@shell CNTs@ZIF-8 (fractured) nanowires

 synthesized at different precursor's concentrations

	CNTs@ZIF-8-0.5	CNTs@ZIF-8	CNTs@ZIF-8-2
	(fractured)	(fractured)	(fractured)
Diameter	66 nm	76 nm	156 nm
Shell thickness	20 nm	26 nm	65 nm

Table S2 Summary of representative anode materials for Li-ion batteries

Anode materials	Cycling performance	Rate capability	Ref.
Peapod-like Co ₃ O ₄ @Carbon nanotube arrays	700 mA h g ⁻¹ after 100 cycles at 100 mA g ⁻¹	453 mA h g ⁻¹ at 1000 mA g ⁻¹	1
Two-dimensional porous micro/nano NiO	568 mA h g ⁻¹ after 50 cycles at 200 mA g ⁻¹	300 mA h g ⁻¹ at 1000 mA g ⁻¹	2
ZnO-loaded/porous carbon composite	654 mA h g ⁻¹ after 100 cycles at 100 mA g ⁻¹	497 mA h g ⁻¹ at 1000 mA g ⁻¹	3
Porous Co ₃ O ₄ /CuO composite	839 mA h g ⁻¹ after 150 cycles at 100 mA g ⁻¹	700 mA h g ⁻¹ at 1000 mA g ⁻¹	4
Carbon nanofibers anchored with Zn _x Co ₃ . _x O ₄ nanocubes	600 mA h g ⁻¹ after 300 cycles at 500 mA g ⁻¹	337 mA h g ⁻¹ at 1000 mA g ⁻¹	5
Porous polyhedral ZnCo ₂ O ₄ /CNTs composites	864.6 mA h g ⁻¹ after 150 cycles at 100 mA g ⁻¹	606 mA h g ⁻¹ at 2000 mA g ⁻¹	6
Hierarchical ZnCo ₂ O ₄ /NiO core/shell nanowire arrays	357 mA h g ⁻¹ after 50 cycles at 100 mA g ⁻¹	200 mA h g ⁻¹ at 800 mA g ⁻¹	7
CNTs@ZnCo ₂ O ₄ nanowires NiO@ZnCo ₂ O ₄	750 mA h g ⁻¹ after 100 cycles at 100 mA g ⁻¹ 1002 mA h g ⁻¹ after 100	460 mA h g ⁻¹ at 1000 mA g ⁻¹ 462 mA h g ⁻¹ at	This work
nanowires	cycles at 100 mA g^{-1}	1000 mA g ⁻¹	

Reference

- D. Gu, W. Li, F. Wang, H. Bongard, B. Spliethoff, W. Schmidt, C. Weidenthaler, Y. Y. Xia, D. Y. Zhao and F. Schuth, *Angew. Chem. Int. Ed.*, 2015, **127**, 7166.
- 2. H. L. Cao, X. F. Zhou, C. Zheng and Z. P. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 11984.
- 3. X. Y. Shen, D. B. Mu, S. Chen, B. R. Wu and F. Wu, *ACS Appl. Mater. Interfaces*, 2013, 5, 3118.
- 4. Q. Hao, D. Y. Zhao, H. M. Duan and C. X. Xu, ChemSusChem, 2015, 8, 1435.
- 5. R. Z, Chen, Y. Hu, Z. Shen, Y. L. Chen, X. He, X. W. Zhang and Y. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 2591.
- 6. Q. Ru, X. Song, Y. Mo, L. Guo and S. Hu, J. Alloys Com., 2016, 654, 586.
- 7. Z. Sun, W. Ai, J. Liu, X. Qi, Y. Wang, J. Zhu, H. Zhang and T. Yu, *Nanoscale*, 2014, 6, 6563.