Supporting Information

Biomass-Derived Three-Dimensional Honeycomb-Like Hierarchical Structured

Carbon for Ultrahigh-Energy-Density Asymmetric Supercapacitors

Dandan Shan, Jiao Yang, Wei Liu, Jun Yan*, Zhuangjun Fan*

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of

Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

^{*}Corresponding authors. Tel. /fax: +86 451 82569890.

E-mail address: yanjun198201@163.com (J. Yan); fanzhj666@163.com (Z. Fan).

Figure S1.

Figure S1. (a) SEM and (b-d) TEM images of the carbonized BC (a and b) and HSC-0.2 (c and d).

Figure S2.

Figure S2. (a) N_2 adsorption/desorption isotherm of the carbonized BC. (b) Cumulative pore volume of the HSC samples.

Figure S3. Raman spectra of (a) HSC-0.05, (b) HSC-0.1 and (c) HSC-0.5. (d) High-resolution O 1s spectrum of the HSC-0.2 sample.

Figure S4.

Figure S4. TGA curve of the HSC-0.2 sample.

Figure S5.

Figure S5. (a) TEM image and (b) Barrett-Joyner-Halenda (BJH) pore size distribution of the NiCoAl-LDH.

Fig. S6.

Fig. S6. The relationship between peak current and scan rates from 2 to 100 mV s⁻¹ for the NiCoAl-LDH electrode.

Figure S7.

Figure S7. Specific capacitance of the fabricated NiCoAl-LDH//HSC-0.2 asymmetric supercapacitors at different scan rates.

Electrode	Scan rate	Capacitance (F/g)	Rate capability	Cycling life	Ref.
NiCo-LDH/ZTO	0.5 A/g	1805	70.6% (100 A/g)	92.7% (5000)	[1]
NiCo-LDH	1.0 A/g	1887	63.9% (10 A/g)	99.7% (3000)	[2]
NiCo-LDH	1.0 A/g	1372	67.8% (30 A/g)	91.2% (10000)	[3]
NiCo-LDH	3.0 A/g	2682	59.6% (20 A/g)	82% (5000)	[4]
NiCo-LDH	6.0 A/g	1734	66.1% (30 A/g)	86% (1000)	[5]
NiCo-LDH	1.0 A/g	1292	43.0% (50 A/g)	72% (3000)	[6]
NiCo-LDH/CNTs	1.0 A/g	1151	61.0% (70 A/g)	77% (10000)	[7]
CBC/NiCo-LDH	1.0 A/g	1950	54.7% (20 A/g)	74% (5000)	[8]
NiMn-LDH/graphene	1.0 A/g	2246	59.4% (20 A/g)	67% (1500)	[9]
NiMn-LDH	1.0 A/g	1725	57.5% (20 A/g)	44% (1500)	[9]
NiCo-LDH/CTs	2.0 A/g	2105	83.1% (6 A/g)	90% (2000)	[10]
NiCoMn-LDH	1 mA/cm ²	1400	95% (100 mA/cm ²)	117% (3000)	[11]
CoAl-LDH	1.0 A/g	1043	87.4% (20 A/g)	88% (3000)	[12]
NiCoAl-LDH/graphene	1.0 A/g	1866	72.9% (10 A/g)	100% (5000)	[13]
NiCoAl-LDH	1.0 A/g	1297	59% (30 A/g)	97% (10000)	[14]
NiMn-LDH	1 mA/cm ²	160	—	85% (1200)	[15]
CoAl-LDH/CNTs	0.86 A/g	884	59.8% (4.3 A/g)	88% (2000)	[16]
Fe ₃ O ₄ @C@NiAl-LDH	1.0 A/g	767.6	59.8% (10 A/g)	92% (1000)	[17]
NiCoAl-LDH/CNT/graphene	1.0 A/g	1188	72% (10 A/g)	100% (1000)	[18]
NiMn-LDH/CNTs	1.5 A/g	2960	79.5% (30 A/g)	97.2% (2000)	[19]
NiAl-LDH/graphene	3.57 A/g	1329	64% (17.86 A/g)	91% (500)	[20]
NiAl-LDH/graphene	0.1 A/g	1730.2	45.7% (10 A/g)	99.2% (500)	[21]
NiAl-LDH/graphene	1.0 A/g	2712.7	43.3% (50 A/g)	98.9% (5000)	[22]
NiAl-LDH	0.5 A/g	795	25.4% (10 A/g)	80% (1000)	[23]
CoAl-LDH@PEDOT	2 mV/s	649	68.6% (40 mV/s)	92.5% (5000)	[24]
NiCoAl-LDH/CNTs	1.0 A/g	1035	57.7% (10 A/g)	83.2% (1000)	[25]
CoAl-LDH/graphene	1.0 A/g	711.5	72.6% (10 A/g)	81% (2000)	[26]
NiAl-LDH	2.0 A/g	735	75% (25 A/g)	105.6% (1000)	[27]
NiAl-LDH	1.8 A/g	814	50.2% (18 A/g)	95% (400)	[28]
CoAl-LDH/GO	1.0 A/g	1031	24.2% (20 A/g)	100% (6000)	[29]
CoMn-LDH	0.7 A/g	1063	69.1% (28.6 A/g)	96.3% (5000)	[30]
NiCo-LDH	0.5 A/g	1537	76.8% (10 A/g)	80.3% (1000)	[31]
NiCoAl-LDH	2 mV/s	1480	66.5% (100 mV/s)	89.5% (10000)	This work

Table S1. Comparison of the performance of NiCoAl-LDH with previously reported LDH materials.

Table S2. Performance comparison of NiCoAl-LDH//HSC-0.2 ASC with previously reported

ASCs	Electrolyte	Voltage window (V)	Energy density (Wh/kg)	Ref.
NiCo-LDH/ZTO//AC	2 M KOH	1.2	23.7	[1]
NiCo-LDH//AC	2 M KOH	1.5	25.3	[3]
NiCo-LDH//graphene	1 M KOH	1.6	53	[4]
CBC/NiCo-LDH//CBC	6 M KOH	1.6	36.3	[8]
CoAl-LDH//SGC	6 M KOH	1.6	41.2	[12]
NiCoAl-LDH//AC	6 M KOH	1.6	58.9	[14]
CoAl-LDH/CNTs//AC	2 M KOH	1.6	28	[16]
NiMn-LDH/CNTs//graphene	Nafion/KOH	1.7	88.3	[19]
CoAl-LDH/graphene//AC	6 M KOH	1.75	35.5	[32]
NiP@CoAl-LDH//AC	2 M KOH	1.6	37.2	[33]
NiAl-LDH/graphene//AC	1 M KOH	1.6	15.4	[34]
CoMn-LDH//AC	1 M LiOH	1.8	5.9	[30]
NiAl-LDH//porous graphene	6 M KOH	1.6	30.2	[35]
NiAl-LDH/CNT//AC	2 M KOH	1.8	52	[36]
CoAl-LDH//graphene	6 M KOH	1.6	34.7	[37]
NiCo-LDH//PPy	1 M KOH	1.3	61.3	[38]
CoAl-LDH//AC	2 M KOH	1.6	27.3	[39]
CoAl-LDH/graphene//AC	6 M KOH	1.4	28	[40]
NiCo-LDH//mesoporous carbon	6 M KOH	1.5	33.7	[31]
CoAl-LDH/MnO2//AC	1 M LiOH	1.8	34.2	[41]
NiCo-LDH//FeOOH	3 M KOH	1.5	86.4	[42]
ZnO@Ni(OH)2//CFs	6 M KOH	1.6	57.6	[43]
CF@ZnCo ₂ O ₄ //CFs	KOH/PVA	1.6	49.5	[44]
MnCo2O4@Ni(OH)2//AC	2 M KOH	1.6	48	[45]
Ni(OH) ₂ /graphene//graphene	2 M KOH	1.6	75	[46]
Ni(OH) ₂ /CNTs//AC	6 M KOH	1.8	50.6	[47]
Ni(OH)2/CNT/PEDOT//rGO/CNTs	1 M KOH	1.5	58.5	[48]
Ni(OH) ₂ /rGO//rGO	6 M KOH	1.6	77.8	[49]
NiCoAl-LDH//HSC-0.2	6 M KOH	1.6	100	This work

ASCs in aqueous electrolytes.

References

- [1] X. Wang, A. Sumboja, M. Lin, J. Yan, P. S. Lee, Nanoscale 2012, 4, 7266.
- [2] Y. Tao, Z. Haiyan, L. Ruiyi, L. Zaijun, L. Junkang, W. Guangli, G. Zhiquo, *Electrochim. Acta* **2013**, *111*, 71.
- [3] M. Jing, H. Hou, C. E. Banks, Y. Yang, Y. Zhang, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 22741.
- [4] H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 2014, 24, 934.
- [5] J. Pu, Y. Tong, S. Wang, E. Sheng, Z. Wang, J. Power Sources 2014, 250, 250.
- [6] M. F. Warsi, I. Shakir, M. Shahid, M. Sarfraz, M. Nadeem, Z. A. Gilani, *Electrochim. Acta* 2014, 135, 513.
- [7] M. Li, K. Y. Ma, J. P. Cheng, D. Lv, X. B. Zhang, J. Power Sources 2015, 286, 438.
- [8] F. Lai, Y.-E. Miao, L. Zuo, H. Lu, Y. Huang, T. Liu, Small 2016, DOI: 10.1002/smll.201600412.
- [9] J. Chen, X. Wang, J. Wang, P. S. Lee, Adv. Energy Mater. 2016, 6, 1501745.
- [10] G. Nagaraju, G. S. R. Raju, Y. H. Ko, J. S. Yu, *Nanoscale* **2016**, *8*, 812.
- [11] G. Xiong, P. He, L. Liu, T. Chen, T. S. Fisher, J. Mater. Chem. A 2015, 3, 22940.
- [12] X. L. Wu, L. L. Jiang, C. L. Long, T. Wei, Z. J. Fan, Adv. Funct. Mater. 2015, 25, 1648.
- [13] P. Huang, C. Cao, Y. Sun, S. Yang, F. Wei, W. Song, J. Mater. Chem. A 2015, 3, 10858.
- [14] J. Yang, C. Yu, X. Fan, J. Qiu, Adv. Energy Mater. 2014, 4, 1400761.
- [15] S. Anandan, C.-Y. Chen, J. Wu, RSC Adv. 2014, 4, 55519.
- [16] L. Yu, N. Shi, q. liu, J. Wang, B. Yang, B. Wang, H. Yan, Y. Sun, x. jing, *Phys. Chem. Chem. Phys.* 2014, 16, 17936.
- [17] L. Li, R. Li, S. Gai, F. He, P. Yang, J. Mater. Chem. A 2014, 2, 8758.
- [18] C. Yu, J. Yang, C. Zhao, X. Fan, G. Wang, J. Qiu, Nanoscale 2014, 6, 3097.
- [19] J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 2938.
- [20] J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, J. Mater. Chem. A 2014, 2, 1022.
- [21] Y. L. Niu, R. Y. Li, Z. J. Li, Y. J. Fang, J. K. Liu, *Electrochim. Acta* 2013, 94, 360.
- [22] L. Yan, R. Y. Li, Z. J. Li, J. K. Liu, Y. J. Fang, G. L. Wang, Z. G. Gu, *Electrochim. Acta* 2013, 95, 146.
- [23] B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, L. Liu, J. Power Sources 2014, 246, 747.
- [24] J. B. Han, Y. B. Dou, J. W. Zhao, M. Wei, D. G. Evans, X. Duan, Small 2013, 9, 98.
- [25] J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, J. Mater. Chem. A 2013.
- [26] L. J. Zhang, X. G. Zhang, L. F. Shen, B. Gao, L. Hao, X. J. Lu, F. Zhang, B. Ding, C. Z. Yuan, J. Power Sources 2012, 199, 395.
- [27] M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D. G. Evans, X. Duan, Chem. Mater. 2012, 24, 1192.
- [28] Y. Song, J. Wang, Z. Li, D. Guan, T. Mann, Q. Liu, M. Zhang, L. Liu, Micropor. Mesopor. Mater. 2012, 148, 159.
- [29] L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, B. A. Chen, J. A. Jin, *Chem. Commun.* 2011, 47, 3556.
- [30] A. D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, J. Power Sources 2016, 306, 526.
- [31] R. Li, Z. Hu, X. Shao, P. Cheng, S. Li, W. Yu, W. Lin, D. Yuan, Sci. Rep. 2016, 6, 18737.

- [32] W. F. Zhang, C. Ma, J. H. Fang, J. P. Cheng, X. B. Zhang, S. R. Dong, L. Zhang, RSC Adv. 2013, 3, 2483.
- [33] S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu, T. He, *Electrochim. Acta* 2016, 204, 160.
- [34] X. Ge, C. Gu, Z. Yin, X. Wang, J. Tu, J. Li, Nano Energy 2016, 20, 185.
- [35] L. Zhang, K. N. Hui, K. San Hui, H. Lee, J. Power Sources 2016, 318, 76.
- [36] M. Li, F. Liu, J. P. Cheng, J. Ying, X. B. Zhang, J. Alloys Compd. 2015, 635, 225.
- [37] W. Lin, W. Yu, Z. Hu, W. Ouyang, X. Shao, R. Li, D. S. Yuan, *Electrochim. Acta* **2014**, *143*, 331.
- [38] Y. Song, X. Cai, X. Xu, X.-X. Liu, J. Mater. Chem. A 2015, 3, 14712.
- [39] K. Ma, J. P. Cheng, J. Zhang, M. Li, F. Liu, X. Zhang, *Electrochim. Acta* 2016, 198, 231.
- [40] T. M. Masikhwa, M. J. Madito, D. Y. Momodu, J. K. Dangbegnon, O. Guellati, A. Harat, M. Guerioune, F. Barzegar, N. Manyala, *RSC Adv.* 2016, *6*, 46723.
- [41] X. Hao, Y. Zhang, Z. Diao, H. Chen, A. Zhang, Z. Wang, RSC Adv. 2014, 4, 63901.
- [42] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nano Energy 2016, 21, 145.
- [43] H. Niu, D. Zhou, X. Yang, X. Li, Q. Wang, F. Qu, J. Mater. Chem. A 2015, 3, 18413.
- [44] H. Niu, X. Yang, H. Jiang, D. Zhou, X. Li, T. Zhang, J. Liu, Q. Wang, F. Qu, J. Mater. Chem. A 2015, 3, 24082.
- [45] Y. Zhao, L. Hu, S. Zhao, L. Wu, *Adv. Funct. Mater.* **2016**, DOI: 10.1002/adfm.201600494.
- [46] Y. H. Liu, R. T. Wang, X. B. Yan, Sci. Rep. 2015, 5.
- [47] Z. Tang, C.-h. Tang, H. Gong, Adv. Funct. Mater. 2012, 22, 1272.
- [48] W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y. Chen, Adv. Funct. Mater. 2015, 25, 1063.
- [49] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.