Supporting Information

Interfacial Reaction-Directed Synthesis of Ceria Nanotube-embedded Ultra-

small Pt Nanoparticle Catalyst with High Catalytic Activity and Thermal

Stability

Yong Wang,^a Guolong Song,^a Zhenhe Xu,^b Federico Rosei,^b Dongling Ma^b and Guozhu Chen*^a

^[a] Y. Wang, G. Song, Prof. G. Chen

School of chemistry and chemical engineering,

University of Jinan

Jinan, Shandong province, 250022 (China)

Email: chm_chengz@ujn.edu.cn

^[b] Dr. Z. Xu, Prof. F. Rosei, Prof. D. Ma

Institut National de la Recherche Scientifique

1650 Boulevard Lionel Boulet, Varennes

Québec, J3X 1S2 (Canada)

Fig. S1. HRTEM image of the CeO_2 -Pt nanotube. The lattice spacing of the (111) plane of Pt and the lattice spacing of the (200) of CeO_2 can be clearly discerned.

Fig. S2. EDX pattern of one individual CeO_2 -Pt nanotube. The inset shows the corresponding TEM image of the selected CeO_2 -Pt nanotube.

Fig. S3. The concentration of Pt in the reaction solution changes with the reaction time. The concentration of Pt was calculated from ICP-MS analysis.

Fig. S4. EDX pattern of one individual CeO_2 -Ru nanotube. The illustration is the corresponding TEM image of the selected CeO_2 -Ru nanotube.

Fig. S5. TEM image of the CeO₂-Pt nanotube after calcination in air for 2 h at a) 500, b) 600, c) 700, and d) 800 °C.

Fig. S6. HRTEM image of the CeO_2 -Pt nanotube after calcination in air at 800 °C for 2 h.

Fig. S7. XRD patterns of pure CeO_2 nanotubes treated at 500, 600, 700, and 800 °C for 2 h.

Fig. S8. TG curve for CeO₂-Pt nanotube catalyst uncalcined in the temperature range of 25-850°C and at a heating rate of 10° C/min in Ar atmosphere.

	500 °C	600 °C	700 °C	800 °C
CeO ₂ nanotubes	6.1 nm	6.7 nm	8.5 nm	11.4 nm
CeO ₂ -Pt nanotubes	5.3 nm	5.2 nm	5.2 nm	7.1 nm

Table S1. Particle size was estimated by Sherrer equation using the (220) crystal plane of CeO_2 .

Fig. S9. Arrhenius plots for the CO oxidation over CeO₂-Pt catalysts before and after calcination in air at 500 and 700 °C for 2 h. Conversions of CO to CO₂ were calculated from the data (X_{CO}) from the online infrared gas analyzer for CO according to X_{CO} = (1 - A_{CO} / A_{CO*}) × 100 (%), where A_{CO*} and A_{CO} are the data of CO before and after the reaction, respectively. The reaction rate (R, mol of CO₂ (mol of Pt s) ⁻¹) was calculated as follows: R = $X_{CO} \times F_{CO} / M_{Pt}$. F_{CO} (mol s⁻¹) is the flow rate of CO in reactant gas, and M_{Pt} is the amount of Pt (mol) in the used catalyst (20 mg).

Fig. S10. Nitrogen adsorption–desorption isotherm and the corresponding BJH pore size distribution for the CeO₂-Pt sample.

Fig. S11. HRTEM images of the CeO₂-Pt, where the pores can be clearly identified (marked by the white arrow).

Fig. S12. H₂-TPR profile of the CeO₂-Pt nanotube catalyst.

Fig. S13. Catalytic cycles of the as-prepared uncalcined CeO₂-Pt catalyst at 160 °C.