Iron and Nitrogen Co-doped Hierarchical Porous Graphite Carbon for High-Efficiency Oxygen Reduction Reaction In a Wide Range of pH

Wenling Gu, ac Liuyong Hu, bc Jing Li*a and Erkang Wang*a

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China;

^bState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China;

°University of the Chinese Academy of Sciences, Beijing, 100049, PR China

*Corresponding author: Prof. Erkang Wang, Associate Prof. Jing Li, Tel: +86-431-85262003, Fax:

+86-431-85689711, Email: ekwang@ciac.ac.cn and lijingce@ciac.ac.cn

Figure S1 Infrared spectra of the gel polymer precursors with different polymerization time of 0 h, 15 h and 30 h. The inset is the corresponding color variation pictures at different polymerization time.

Figure S2 TEM image of the obtained precursor of Fe-PDA-30.

Figure S3 LSV curves (A) electron transfer number (B) and H_2O_2 yield (C) of NPGC and Fe,N/PGC-30 catalysts were measured in 0.1 M KOH electrolyte. The scan rate and rotation rate were 5 mV/s and 1600 rpm, respectively.

Figure S4 SEM images of Fe,N/PGC-0 (a), Fe,N/PGC-15 (b) and Fe,N/PGC-30 (c);

TEM images of Fe,N/PGC-0 (d), Fe,N/PGC-15 (e) and Fe,N/PGC-30 (f).

Figure S5 XRD patterns of different catalysts.

Figure S6 CV curves (A) of the different catalysts in an O_2 -saturated 0.1 M KOH solution. LSV curves (B) electron transfer number (C) and H_2O_2 yield (D) of different catalysts were measured in 0.1 M KOH electrolyte. The scan rate and rotation rate were 5 mV/s and 1600 rpm, respectively.

Figure S7 CV curves (A) of the different catalysts in an O_2 -saturated 0.5 M H₂SO₄ solution. LSV curves (B) electron transfer number (C) and H₂O₂ yield (D) of different catalysts were measured in 0.5 M H₂SO₄ electrolyte. The scan rate and rotation rate were 5 mV/s and 1600 rpm, respectively.

Figure S8 CV curves (A) of the different catalysts in an O₂-saturated 0.1 M PBS (pH = 7.4) solution. LSV curves (B) electron transfer number (C) and H_2O_2 yield (D) of different catalysts were measured in 0.1 M PBS (pH = 7.4) electrolyte. The scan rate and rotation rate were 5 mV/s and 1600 rpm, respectively.

Figure S9 LSV of the Fe,N/PGC-30 and Fe,N/PGC-45 catalysts in O_2 saturated 0.1 M KOH electrolyte with the scan rate of 5 mVs⁻¹. Rotation rate is 1600 rpm.

Catalysts	Electrolyte	E _{onset} (V) vs. RHE	E _{1/2} (V) vs. RHE	Electron transfer number (n)	Reference		
	0.1 M KOH	0.96	0.82	3.9			
Fe,N/PGC-30	0.5 M H ₂ SO ₄	0.86	0.64	3.97	I NIS WORK		
	0.1 M PBS	0.85	0.61	3.96			
Cu-CTF/CP	0.1 M PBS	0.81	0.59	3.75-3.95	1		
Fe-N/C-800	0.1 M KOH	0.923	0.8	3.9			
	0.1 M HClO ₄	0.72	0.55	3.97	2		
Fe-P-C	0.1 M KOH	0.95	_	3.62			
	0.1 M HClO ₄	0.84	0.52	3.8	3		
CoS ₂ /N,S-GO	0.1 M KOH	0.79	_	3.81	4		
Co-C@Co ₉ S ₈ DSNCs	0.1 M KOH	0.96 V	0.8	3.8	5		
g-C ₃ N ₄ /C	0.1 M KOH	0.6	—	3.17	6		
Co-O ₄ -N	0.1 M KOH	0.88	0.81	3.75	7		
: no data presented.							

 Table S1 Comparison of the ORR ability of various catalysts.

	Fe,N/PGC-0	Fe,N/PGC-15	Fe,N/PGC-30
BET surface area			
$(m^2 g^{-1})$	172.85	433.649	509.331
Pore volume			
(cm ³ g ⁻¹)	0.20	0.293	0.315

Table S2 The Brunauer-Emmet-Teller (BET) surface area of different catalysts.

 Table S3 The Elemental compositions of different catalyst samples determined by

 EDX (ICP-AES).

	elements compositions (%) determined by EDX At %						
Samples	(ICP-AES wt%)						
	C atom %	O atom %	N atom %	Fe atom %	(Fe) wt %		
Fe,N/PGC-0	91.47	3.57	4.77	0.18	(0.82)		
Fe,N/PGC-15	90.22	4.15	5.35	0.28	(1.26)		
Fe,N/PGC-30	87.65	5.08	6.86	0.41	(1.84)		

References

- (1) Iwase, K.; Yoshioka, T.; Nakanishi, S. J.; Hashimoto, K.; Kamiya, K. Angew.
- Chem. Int. Ed. 2015, 54, 11068.
- (2) Lin, L.; Zhu, Q.; Xu, A. W. J. Am. Chem. Soc. 2014, 136, 11027.
- (3) Singh, K. P.; Bae, E. J.; Yu, J. S. J. Am. Chem. Soc. 2015, 137, 3165.
- (4) Sun, T.; Wu, Q.; Che, R. C.; Bu, Y. F.; Jiang, Y. F.; Li, Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. ACS Catal. 2015, 5, 1857.
- (5) Hu, H.; Han, L.; Yu, M. Z.; Wang, Z. Y.; Lou, X. W. *Energy Environ. Sci.* **2016**, *9*, 107.
- (6) Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Jurcakova, D. H.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2012, 51, 3892.
- (7) Han, J.; Sa, Y. J.; Shim, Y.; Choi, M.; Park, N.; Joo, S. H.; Park, S. Angew. Chem. Int. Ed. 2015, 54, 12622.