Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

General synthesis of three-dimensional alkali metal vanadates aerogels

with superior lithium storage properties

Guozhao Fang^{*a*}, Jiang Zhou^{**a*, *b*}, Caiwu Liang^{*a*}, Yangsheng Cai^{*a*}, Anqiang Pan^{*a*, *b*}, Xiaoping Tan^{*a*}, Yan Tang^{*a*}, and Shuquan Liang^{**a*, *b*}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China ^b Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, Hunan, China

Figures and Captions

Fig. S1 SEM images of (a and b) the precursor, and (c) NaV₃O₈ materials without freeze-drying, (d) XRD pattern of NaV₃O₈ materials without freeze-drying.

Fig. S2 Nitrogen adsorption-desorption isotherms of (a) NaV₃O₈ aerogel and (b) NaV₃O₈ materials without freeze-drying; Inset: the corresponding pore size distributions.

Fig. S3 Electrochemical performances for NaV_3O_8 materials without freeze-drying. (a) Cycling performance at 50 mA g⁻¹, (b) Rate capability.

Fig. S4 Ex-situ Raman spectroscopies after different cycles at 100 mA g⁻¹ of NaV₃O₈ cathodes.

The Ex-situ Raman spectroscopies after different cycles at 100 mA g⁻¹ of NaV₃O₈ cathodes are indicated in **Fig. S4**. After various cycles, a typical translational mode at 166 cm⁻¹ reflecting the long range order of layered structure and a bond bending vibration mode at 307 cm⁻¹, a typical Raman peak at 795 cm⁻¹ for NaV₃O₈ have no change, indicating that the structure of NaV₃O₈ is almost stable during cycling. Three modes are weaken at 266, 688, and 725 cm⁻¹ after cycling. Several modes are shifted toward higher wavenumber: from 132 to 140 cm⁻¹; from 425 to 438 cm⁻¹; from 479 to 481 cm⁻¹; from 549 to 554 cm⁻¹; from 990 to 995 cm⁻¹. R. Baddour-Hadjean et al. have reported that Raman bands shifting are strongly affected by more lithium ions insertion into the β -Na_{0,33}V₂O₅ host.¹ The result demonstrates that, to some extent, lithium ions insertion in NaV₃O₈ would generate tiny changes for host structure, as discussed before. Fortunately, it does not damage the structure of NaV₃O₈ and the Raman spectrums with various cycles are consistent, which is benefit for the cyclic stability.

Fig. S5 SEM images of (a) NaV₆O₁₅ aerogel precursor, (b) NaV₆O₁₅ aerogel, (c) K_{0.25}V₂O₅ aerogel precursor, and (d) K_{0.25}V₂O₅ aerogel. Both aerogels show nanofiber-in-networks morphology, which consists of cross-linked ultra-long nanofibers.

Fig. S6 TEM images of (a and b) NaV_6O_{15} aerogel, and (c and d) $K_{0.25}V_2O_5$ aerogel.

Fig. S7 Structural characterization and electrochemical performances for NaV₆O₁₅ aerogel. (a) XRD pattern, (b) Raman spectrum, (c) The initial five cyclic voltammetry curves at a scan rate of 0.1 mV s⁻¹ and (d) Rate capability.

The Raman spectrum recorded for NaV₆O₁₅ (Fig. S7b) exhibits 13 modes located at 122, 147, 197, 269, 287, 314, 370, 510, 552, 688, 808, 850, and 1006 cm⁻¹, which agrees with the previous report of β -Na_{0.33}V₂O₅.¹ The highest frequency mode at 1006 cm⁻¹ represents the V-O stretching vibration. The phonon modes in medium-frequency region, such as 510, 552, 688, 808, and 850 cm⁻¹, are due to the O-V-O and V-O-V bending vibrations. And the low-frequency modes below 400 cm⁻¹ correspond to the bond bending vibrations.^{2, 3} For example, the typical translational mode located at 147 cm⁻¹ reflects the long range order in the plane of the NaV₆O₁₅ sheets.² The CV curves is indicated in **Fig. S7c**, the cathodic peaks observed at 3.62, 3.22, 2.80, 2.34, and 1.92 V (vs. Li⁺/Li) belong to the multiple-step intercalation of lithium ions into the NaV₆O₁₅ (Na_{0.33}V₂O₅) phase. And the anodic peaks for deintercalation of lithium ions are located at 2.17, 2.95, 3.10, 3.40, and 3.69 V (vs. Li⁺/Li). NaV₆O₁₅ (Na_{0.33}V₂O₅) is a typical of β -vanadium bronze, which contains tunnels formed by the association of VO₆ and VO₅ frameworks along the *b*-axis, and Na ions are located

inside the tunnels, in half of four interstitial equivalent sites per unit cell along the *b*-axis, named M_{1} .⁴ The two additional tunnel sites for Li intercalation are four eight-coordinated sites (M_2) and four tetrahedral sites (M_3) per unit cell.⁴ During cathodic process before 3.22 V, the lithium ions began to occupy the M_3 sites, and the second process at 2.80 V corresponds to the half occupancy of the M_2 sites. When discharging to 2.34 V, the remaining M_1 , M_2 , and M_3 sites were assigned by the Li ions. According to lithium-ion insertion into V_2O_5 , the cathodic peak below 2.0 V would be ascribed to the formation of irreversible phase.⁵ For our NaV₆O₁₅, fortunately, the peak at 1.92 V in the subsequent scans is consistent, demonstrating good reversibility of NaV₆O₁₅ electrodes. This result also indicates that doping small amount of element (such as Ag⁺, Na⁺, K⁺, etc.) into V₂O₅ interlayers can stable its structure, thus realize the good cycling stability. It can also exhibit a good rate capability (**Fig. S7d**). At various rates of 50, 100, 200, and 500 mA g⁻¹, the electrode exhibits high discharge capacities of 244, 229, 211, and 163 mA h g⁻¹, respectively. Even at the rate of 1000 mA g⁻¹, it still retains a high value of 107 mA h g⁻¹.

Fig. S8 Structural characterization and electrochemical performances for K_{0.25}V₂O₅ aerogel. (a) XRD pattern, (b) Raman spectrum, and cycling performances at (c) 100 mA g⁻¹ and (d) 500 mA g⁻¹.

The Raman spectrum recorded for $K_{0.25}V_2O_5$ (Fig. S8b) exhibits 14 modes located at 152, 262, 321, 349, 371, 399, 425, 504, 559, 702, 777, 874, 949, and 974 cm⁻¹. $K_{0.25}V_2O_5$ is isomorphic to β -Na_{0.33}V₂O₅, which contains 3D tunnels composed by the association of VO₆ and VO₅ frameworks with zigzag double chains along the b axis. However, the phonon modes of $K_{0.25}V_2O_5$ are quite different from that of NaV₆O₁₅ (Na_{0.33}V₂O₅). For instance, the strong phonon modes in medium-frequency for $K_{0.25}V_2O_5$ is from 702 to 874 cm⁻¹, while for NaV₆O₁₅ exhibits from 510 to 688 cm⁻¹. On the contrary, the V-O stretching modes of $K_{0.25}V_2O_5$ are weak and shifted toward lower wavenumber compared to NaV₆O₁₅. These changes demonstrate that K-O chemical bands are formed and K ions make the layer spacing larger,¹ which facilities ion diffusion. $K_{0.25}V_2O_5$ electrodes exhibit excellent stability with no capacity fading over 50 cycles at 100 mA g⁻¹ and 95% capacity retention over 100 cycles at 500 mA g⁻¹ (Fig. S8c and d).

Electrode material	Theoretical capacity /mA h g ⁻¹	Current density /mA g ⁻¹	Capacity/mA h g ⁻¹ (Cyclic number)	Cyclic number (retention/%)	High rate capability /mA h g ⁻¹
NaV ₃ O ₈	318	50	220 (1)	50 (95.9%)	96 (1000 mA g ⁻¹)
		500	155 (1)	400 (85.8%)	
		1000	105 (1)	600 (no fading)	
NaV ₆ O ₁₅		50	244 (1)		
	377	100	222 (1)	30 (96%)	107 (1000 mA g ⁻¹)
		500	161 (1)	200 (93%)	
$K_{0.25}V_2O_5$	384	100	198 (2)	50 (no fading)	· 144 (1000 mA g ⁻¹)
		500	164 (2)	100 (95%)	

Table S1. Comparisons of the electrochemical properties between the three aerogel materials reported in this work.

The three aerogel materials can be regarded as pre-insertion of Na⁺ and K⁺ cations into vanadium pentoxide (V₂O₅) host framework and their theoretical capacity is different. As known, V₂O₅ has a high theoretical capacity of 442 mA h g⁻¹ at the discharge voltage range from 4.0 to 1.5 V (vs. Li⁺/Li) when 3 Li⁺ intercalated into the V₂O₅ host according to the Faraday theory capacity formula:

$$C = \frac{n \cdot F}{3.6 \cdot M} \left(mA \ h \ g^{-1} \right)$$

Where *C* is theoretical capacity, *n* is the molar number of electron exchange, *F* is Faraday constant (~96485 C/mol), *M* is the molar mass of electrode material. NaV₃O₈ can be seen as 0.66 Na⁺ ions intercalated into V₂O₅, abbreviated as Na_{0.66}V₂O₅ and these Na⁺ ions are situated at octahedral sites and link strongly the adjacent vanadium oxygen layers to form a 2D layered structure.^{6, 7} Therefore, when discharged at 4.0-1.5V, theoretically there are (3-0.66) Li⁺ ions intercalated into Na_{0.66}V₂O₅ and its theoretical capacity is calculated as 318 mA h g⁻¹. For NaV₆O₁₅ (Na_{0.33}V₂O₅), 0.33 Na⁺ ions pre-inserted into V₂O₅ host framework to construct 3D network along the *b* axis contains open intercalation sites for about (3-0.33) Li⁺ ions intercalated at 4.0-1.5V,^{1, 4} namely, its theoretical capacity of 384 mA h g⁻¹ according to Faraday theory capacity formula. The above mentioned capacity of each material is based on the theoretical calculation.

Electrode material	Current density /mA g ⁻¹	Cyclic number (retention/%)	Ref.
NaV ₃ O ₈	1000	600 (without fading)	
NaV ₆ O ₁₅	500	200 (93%)	This work
$K_{0.25}V_2O_5$	500	100 (95%)	
Na _{1.1} V ₃ O _{7.9}	1500	200 (95%)	8
nanobelts	2000	200 (72%)	
Na _{1.08} V ₃ O ₈ nanosheets	1000	200 (without fading)	9
Na _{1.25} V ₃ O ₈ nanobelts	200	450 (94%)	10
Na _{1.25} V ₃ O ₈ nanowire arrays	50	50 (85.4%)	11
Na ₂ V ₆ O ₁₆ ·0.14H ₂ O nanowires	300	200 (76.9%)	12
Mesoporous β -Na _{0.33} V ₂ O ₅	50	50 (60.2%)	13
Na _{0.33} V ₂ O ₅ -graphene hybrids	4500	400 (87.4%)	14
highly crystalline β -Na _{0.33} V ₂ O ₅		70 (89%)	4
K-V-O nanowires	1000	900 (76%)	15
Book-like K _{0.23} V ₂ O ₅	50	100 (76%)	16
K _{0.25} V ₂ O ₅	500	500 (88.5%)	17
$K_{0.5}V_2O_5$ nanorods	C/10	70 (87%)	18

Table S2. Comparisons of cyclic stability of sodium and potassium vanadates cathodes.

References

- R. Baddour-Hadjean, S. Bach, N. Emery and J. P. Pereira-Ramos, *J. Mater. Chem.*, 2011, 21, 11296.
- R. Baddour-Hadjean, J. P. Pereira-Ramos, C. Navone and M. Smirnov, *Chem. Mater.*, 2008, 20, 1916-1923.
- 3 R. Baddour-Hadjean, E. Raekelboom and J. P. Pereira-Ramos, *Chem. Mater.*, 2006, **18**, 3548-3556.
- 4 J. K. Kim, B. Senthilkumar, S. H. Sahgong, J. H. Kim, M. Chi and Y. Kim, *ACS Appl. Mater. Interfaces*, 2015, 7, 7025-7032.
- 5 M. S. Whittingham, J. Electrochem. Soc., 1976, **123**, 315.
- 6 J. Kawakita, Solid State Ionics, 1999, **124**, 21-28.
- J. Kawakita, K. Makino, Y. Katayama, T. Miura and T. Kishi, *Solid State Ionics*, 1997, 99, 165-171.
- S. Liang, J. Zhou, G. Fang, J. Liu, Y. Tang, X. Li and A. Pan, ACS Appl. Mater. Interfaces, 2013, 5, 8704-8709.
- 9 H. Wang, S. Liu, Y. Ren, W. Wang and A. Tang, *Energy Environ. Sci.*, 2012, 5, 6173.
- S. Liang, T. Chen, A. Pan, D. Liu, Q. Zhu and G. Cao, ACS Appl. Mater. Interfaces, 2013, 5, 11913-11917.
- Y. Cao, D. Fang, C. Wang, L. Li, W. Xu, Z. Luo, X. Liu, C. Xiong and S. Liu, *RSC Adv.*, 2015, 5, 42955-42960.
- 12 D. Zhou, S. Liu, H. Wang and G. Yan, J. Power Sources, 2013, 227, 111-117.
- 13 S. Liu, J. Wu, J. Zhou, G. Fang and S. Liang, *Electrochim. Acta*, 2015, 176, 1-9.
- Y. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P. Lu, L. Yang, H. Yang and Q. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 17433-17440.
- Y. Zhao, C. Han, J. Yang, J. Su, X. Xu, S. Li, L. Xu, R. Fang, H. Jiang, X. Zou, B. Song, L.
 Mai and Q. Zhang, *Nano Lett.*, 2015, 15, 2180-2185.
- 16 M. Xu, J. Han, G. Li, Y. Niu, S. Liu, J. Hou, M. Wang, J. Song and C. M. Li, *Chem. Commun.*, 2015, **51**, 15290-15293.
- G. Z. Fang, J. Zhou, Y. Hu, X. X. Cao, Y. Tang and S. Q. Liang, *J. Power Sources*, 2015, 275, 694-701.

18 S. Bach, A. Boudaoud, N. Emery, R. Baddour-Hadjean and J. P. Pereira-Ramos, *Electrochim. Acta*, 2014, **119**, 38-42.