Electronic Supplementary Information (ESI)

Nanoporous PtCuTi alloy with low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen

reduction

Ying Wang,^a Kuibo Yin,^b Jie Zhang,^a Conghui Si,^a Xiaoting Chen,^a Lanfen Lv,^a Wensheng Ma,^a Hui Gao,^a Zhonghua Zhang^{a,*}

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P.R. China
^bSEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P.R. China

*Corresponding author. Email: <u>zh_zhang@sdu.edu.cn</u>, TEL/FAX: +86-531-88396978

Figure S1. Photograph of the mechanically alloyed $Cu_{92}Ti_5Pt_3$ powders (left) and a set of the milling tank with balls (right). For each milling tank, about 25 g alloy powders could be prepared after mechanical alloying. For the planetary ball mill machine with four sets of the milling tanks, the precursor powders of up to 100 g can be produced after one batch of mechanical alloying.

Figure S2. SEM images showing the microstructure of (a, b) the mechanically alloyed $Cu_{92}Ti_5Pt_3$ powders and (c, d) the as-dealloyed np-PtCuTi samples.

Figure S3. Typical EDX spectra and corresponding elemental contents of (a) the asmilled $Cu_{92}Ti_5Pt_3$ precursor powders and (b) the as-dealloyed np-PtCuTi alloy.

Figure S4. (a) STEM image showing the microstructure of the mechanically alloyed $Cu_{92}Ti_5Pt_3$ sample. (b) The marked area for EDX-mapping (100 nm × 100 nm). (c-e) EDX mapping images corresponding to the marked area in (a).

Figure S5. (a) XPS broad scan spectrum of the np-PtCuTi alloy. XPS spectra of (b) Cu 2p and (c) Cu $2p_{1/2}$ for the np-PtCuTi alloy.

Figure S6. Stable CVs of the np-PtCuTi and PtC catalysts in the N₂-purged 0.5 M H_2SO_4 solution. (Scan rate: 50 mV s⁻¹)

Figure S7. The evolution of CV curves of (a) PtC and (b) the np-PtCuTi alloy in the N_2 -purged 0.5 M H₂SO₄ solution. (Scan rate: 50 mV s⁻¹)

Figure S8. Stable CV curves of the np-PtCuTi and PtC catalysts in the N₂-purged 0.1 M HClO₄ solution. (Scan rate: 50 mV s⁻¹)

Figure S9. The evolution of CV curves of (a) PtC and (b) the np-PtCuTi alloy in the N_2 -purged 0.1 M HClO₄ solution. (Scan rate: 50 mV s⁻¹)

Figure S10. (a) CVs and (b) ORR polarization curves for the PtC catalyst after 10 and 10000 potential cycles in the O_2 -saturated 0.1 M HClO₄ solution.

Figure. S11. The schematic model of methanol adsorbed on Pt (111) and PtCuTi (111) slabs: (a,b) top site, (c,d) bridge site.

Figure. S12. The schematic model of oxygen adsorbed on (a) the bridge site of Pt (111) and (b) the top site of PtCuTi (111).

Figure. S13. Difference electron density maps highlighting the electron charge density redistribution due to the O_2 adsorption on the (a) Pt (111) and (b) PtCuTi (111) surfaces. Yellow and blue colors represent depletion and accumulation of electrons, respectively.

			MOR				СО
Sample	$E_{\text{onset}}(\mathbf{V})$	$E_{\text{peak}}(\mathbf{V})$	j _{ECSA} (mA	j _{mass} (mA	I /I	ECSA	$E_{\text{peak}}(\mathbf{V})$
	(vs. SCE)	(vs. SCE)	cm ⁻²)	mg ⁻¹ _{Pt})	$I_{\rm f}/I_{\rm b}$	$(m^2 g^{-1})$	(vs. SCE)
PtC	0.14	0.62	0.5	230	0.85	46	0.67
np-	0.17	0.61	2.5	721	1.26	20	0.51
PtCuTi	0.17	0.01	2.3	/21	1.50	29	0.31
RSD of np-	1.00/	0.80/	7 20/	2.00/	7 (0/	4.00/	2.00/
PtCuTi	1.9%	0.8%	1.5%	3.9%	/.0%	4.8%	2.9%
Abbreviations: RSD, relative standard deviation							

Table S1. Comparison of MOR parameters for the np-PtCuTi alloy and commercial PtC catalyst for methanol electro-oxidation in the 0.5 M H_2SO_4 and 0.5 M H_2SO_4 + 0.5 M CH_3OH solution.

Sample		MOR					
		$\dot{J}_{ m ECSA}$	IF of SA	$\dot{J}_{ m mass}$	IF of MA		
	rej	(mA cm ⁻²)	(vs PtC)	(mA mg ⁻¹ _{Pt})	(vs PtC)		
Our np-PtCuTi		2.50	5	721	3.1		
$Np-Pt_{60}Cu_{40}$	1	4.90	4.9	750			
Np-PtCu	2	4.00	4	730	1.6		
Spiny-porous Pt nanotubes	3	0.55	3.2	260	1.5		
Tetrahexahedral Pt-Ni nanoframes	4	2.19	2.63	840	3.9		
Hollow Pt ₄ Ru	5	0.62	2.5				
Dendritic Pt-Ni-P alloy nanoparticles	6	0.65	2.3	360	2.4		
Nanoporous Pd ₂₇ @Pt ₇₃ particles	7			490	2.1		
TeCuPt nanowires	8			245	2.3		
Pt-MoO3-RGO hollow nanorods	9			~770	~1.9		
PtFe@Pt nanodendrites	10			821	2.5		
Abbreviations: SA, specific activity; MA, mass activity; IF, improvement factor.							

Table S2. Comparison of the MOR activity of our np-PtCuTi alloy with that of

 previously reported state-of-the-art electrocatalysts.

	ORR							
Sample	$E_{half}(V)$ (vs.	$j_{\rm ECSA,0.90V}$ (mA cm ⁻	$j_{\rm mass,0.90V}$ (mA mg ⁻	ECSA (m ² g ⁻				
	RHE)	²)	1 Pt)	1)				
PtC	0.864	0.20	135	66				
np-PtCuTi	0.908	0.84	256	30.5				
RSD of np-PtCuTi	0.3%	6.9%	8.3%	4.8%				
Abbreviations: RSD,	relative standard	deviation						

Table S3. Comparison of ORR parameters for the np-PtCuTi alloy and commercialPtC catalyst for ORR in the 0.1 M HClO4 solution.

	ORR						
Cycling number	<i>E</i> _{half} (V) (vs. RHE)	$j_{\rm ECSA, 0.90V}$ (mA cm ⁻²)	$j_{\text{mass},0.90V}$ (mA mg ⁻¹ _{Pt})	ECSA (m ² g ⁻¹)			
10	0.908	0.84	256	30.5			
5000	0.903	0.92	239	25.9			
10000	0.901	0.88	225	25.5			
15000	0.903	1.05	233	21.85			
20000	0.903	1.10	234	20.89			

Table S4. Comparison of ORR parameters for the np-PtCuTi alloy after different cycling numbers in the oxygen-saturated 0.1 M HClO₄ solution.

	ORR					
materials	ref	\dot{J} ECSA,0.90V	$\dot{J}_{ m mass,0.90V}$	$E_{\rm half}$		
		(mA cm ⁻²)	(mA mg ⁻¹ _{Pt})	(V vs. RHE)		
Porous hollow PtNi ₃ /C	11	1.29	564			
Octahedral PtNiIr nanoparticle	12 1.03 511		511	0.912		
our np-PtCuTi		0.84	256	0.908		
Pt-Fe nanodendrites	13	0.82	~240			
Np-PtRuCuOsIr	14	0.77	249	0.900		
Pt78Cu22 nanodendrites	15	0.63	320			
Np-Pt ₃ Cu	16	0.61	189	0.905		
Pt/V-TiO2	17	0.57		0.873		
Pt/Ti _{0.9} Co _{0.1} N	18	0.54	460	0.905		
Np-PtTi	19	0.52	320			
Np-PtPdAlCu	20	0.50	177	0.880		
PtPd nanocage-rGO	21	0.48	534	0.953		
Cu-Pt Nanocage	22	0.47	320	0.846		
Pd ₉ Ru@Pt/C	23	0.26	380			
Pt/GC-Fe ₂ MoC	24		267.7			

Table S5. Comparison of the ORR activity of our np-PtCuTi alloy with the state-of-the-art ORR electrocatalysts from the previous literatures.

	ORR durability						
material	cycling number	voltage range (vs. RHE)	RR of SA	RR of MA	ΔE _{half} (mV)	RR of ECSA	ref
Octahedra PtNiCo/C	6000	0.6- 1.1 V		37.6%	24		25
PtPd nanocage-rGO	10000	0.6-1.05 V	73.6%	71%	9	88.7%	21
Octahedral Pt-Ni	4000	0.6-1.0 V	54.4%	48.5%	~20	92%	26
Au _{1.03} Pt/C decahedra	30000	0.6-1.0 V	~90%	~80%	17		27
PtNi octahedra	10000	0.6-1.1 V	108%	93%	~0	89%	28
Octahedral Pt ₂ CuNi	4000	0.6-1.0 V	78%	81.3%	~10	95.6%	29
Octahedral PtNiIr nanoparticle	10000	0.6-1.0 V	73%	66%			12
Np-PtRuCuOsIr	15000	0.6-1.0 V	73.1%	50%	25	63.1%	14
Pt78Cu22 nanodendrites	5000	0.6-1.1 V			23	88%	15
our np-PtCuTi	20000	0.6-1.0 V	130%	91%	5	68.5%	
Abbreviations: RR, retention rate.							

Table S6. Comparison of the ORR durability of our np-PtCuTi alloy with those of thepreviously reported state-of-the-art ORR electrocatalysts.

References

- H. J. Qiu, X. Shen, J. Q. Wang, A. Hirata, T. Fujita, Y. Wang and M. W. Chen, Acs Catal., 2015, 5, 3779-3785.
- H. J. Qiu, H. T. Xu, X. Li, J. Q. Wang and Y. Wang, J. Mater. Chem. A, 2015, 3, 7939-7944.
- Y. Zuo, K. Cai, L. Wu, T. Li, Z. Lv, J. Liu, K. Shao and H. Han, J. Mater. Chem. A, 2015, 3, 1388-1391.
- J. Ding, L. Bu, S. Guo, Z. Zhao, E. Zhu, Y. Huang and X. Huang, *Nano lett.*, 2016, 16, 2762-2767.
- 5. Y. Hu, A. Zhu, Q. Zhang and Q. Liu, J. Power Sources, 2015, 299, 443-450.
- 6. J. Zhang, K. Li and B. Zhang, *Chem. Commun.*, 2015, **51**, 12012-12015.
- B. Jiang, C. Li, J. Henzie, T. Takei, Y. Bando and Y. Yamauchi, *J. Mater. Chem. A*, 2016, 4, 6465-6471.
- H. Li, C. Ren, S. Xu, L. Wang, Q. Yue, R. Li, Y. Zhang, Q. Xue and J. Liu, J. Mater. Chem. A, 2015, 3, 5850-5858.
- L. Wang, L. Liang, F.Lu, X. Tong and R. Li, J. Mater. Chem. A, 2016, 4, 1923-1930.
- J. Zhu, M. Xiao, K. Li, C. Liu and W. Xing, *Chem. Commun.*, 2015, 51, 3215-3218.
- L. Dubau, T. Asset, R. Chattot, C. Bonnaud, V. Vanpeene, J. Nelayah and F.
 Maillard, ACS Catal., 2015, 5, 5333-5341.

- T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, F. Yin, X. Sun,
 D. Zhang and M. Wang, *J. Power Sources*, 2015, **291**, 201-208.
- 13. J. Mao, Y. Chen, J. Pei, D. Wang and Y. Li, *Chem. Commun.*, 2016, **52**, 5985-5988.
- X. Chen, C. Si, Y. Gao, J. Frenzel, J. Sun, G. Eggeler and Z. Zhang, *J. Power Sources*, 2015, 273, 324-332.
- S. Fu, C. Zhu, Q. Shi, H. Xia, D. Du and Y. Lin, *Nanoscale*, 2016, 8, 5076-5081.
- J. Sun, J. Shi, J. Xu, X. Chen, Z. Zhang and Z. Peng, *J. Power Sources*, 2015, 279, 334-344.
- 17. J.-H. Kim, G. Kwon, H. Lim, C. Zhu, H. You and Y.-T. Kim, *J. Power Sources*, 2016, **320**, 188-195.
- Y. Xiao, G. Zhan, Z. Fu, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu and Z. Wei, J. Power Sources, 2015, 284, 296-304.
- 19. H. Duan, Q. Hao and C. Xu, J. Power Sources, 2015, 280, 483-490.
- X. Chen, Y. Jiang, J. Sun, C. Jin and Z. Zhang, J. Power Sources, 2014, 267, 212-218.
- S. Bai, C. Wang, W. Jiang, N. Du, J. Li, J. Du, R. Long, Z. Li and Y. Xiong, Nano Res., 2015, 8, 2789-2799.
- 22. V. M. Dhavale and S. Kurungot, ACS Catal., 2015, 5, 1445-1452.
- Y. Sun, Y.-C. Hsieh, L.-C. Chang, P.-W. Wu and J.-F. Lee, *J. Power Sources*, 2015, 277, 116-123.

- Z. Yan, M. Zhang, J. Xie and P. K. Shen, *J. Power Sources*, 2015, 295, 156-161.
- 25. X. Huang, Z. Zhao, Y. Chen, E. Zhu, M. Li, X. Duan and Y. Huang, *Energy Environ. Sci.*, 2014, **7**, 2957-2962.
- 26. C. Zhang, S. Y. Hwang, A. Trout and Z. Peng, *J. Am. Chem. Soc.*, 2014, **136**, 7805-7808.
- T. Bian, H. Zhang, Y. Jiang, C. Jin, J. Wu, H. Yang and D. Yang, *Nano lett.*, 2015, **15**, 7808-7815.
- E. Zhu, Y. Li, C.-Y. Chiu, X. Huang, M. Li, Z. Zhao, Y. Liu, X. Duan and Y. Huang, *Nano Res.*, 2015, 9, 149-157.
- 29. C. Zhang, W. Sandorf and Z. Peng, ACS Catal., 2015, 5, 2296-2300.