Supplementary Information

Nitrogen-doped carbon nets with micro/mesoporous structure as

electrodes for high-performance supercapacitor

Li-Na Han, Xiao Wei,* Qian-Cheng Zhu, Shu-Mao Xu, Kai-Xue Wang, Jie-Sheng Chen*

Fig. S1. XRD patterns of TiN/Cnet samples obtained at 800 °C for 1 h with different amount of TTIP and P123. The peak around 26 degrees indicated the existence of carbon components in all the samples. The TiN components exhibited the characteristic diffraction peaks of typical cubic phase TiN (NaCl-type structure, JCPDS No. 38-1420) at 36.91, 43.11, 62.61, 74.11 and 77.91 degrees, ascribed to the crystal planes of (111), (200), (220), (311) and (222), respectively.

Fig. S2. SEM images of the obtained nitrogen-doped micro/mesoporous carbon materials, (a) N-MM-Cnet-1, (b) N-MM-Cnet-2, (c) N-MM-Cnet-3 and (d) N-MM-Cnet-4.

Fig. S3. TEM of the obtained nitrogen-doped micro/mesoporous carbon materials: (a)-(b), N-MM-Cnet-1, (b)-(c) N-MM-Cnet-2, (d)-(e) N-MM-Cnet-3, (g)-(h) N-MM-Cnet-4.

Fig. S4. TEM of N-MM-Cnet-4. Except for carbon net (up), layered carbon (down) formed in N-MM-Cnet-4.

Fig. S5. Raman spectrum of the obtained nitrogen-doped micro/mesoporous carbon nets materials.

Fig. S6. High-resolution XPS spectra of N1s for nitrogen-doped micro/mesoporous carbon nets: (a) N-MM-Cnet-1, (b) N-MM-Cnet-2, (c) N-MM-Cnet-3 and (d) N-MM-Cnet-4.

Fig. S7. Cross-sectional SEM images of the N-MM-Cnet-3 film were taken from the same sample with difference area density (a) 8.63 mg·cm⁻², (b) 8.84 mg·cm⁻² and (c) 4.64 mg·cm⁻². The mass density of the N-MM-Cnet-3 film was calculated using a measured area density and an average thickness.⁴⁵ The measurement was repeated several times, and the mass density values were relatively similar. The measured mass density was 0.57 ± 0.02 g·cm⁻³.

Fig. S8. Cyclic voltammetry (CV) curves of nitrogen-doped micro/mesoporous carbon nets measured at different scan rate from 2 to 100 mV·s⁻¹. (a) N-MM-Cnet-1, (b) N-MM-Cnet-2, (c) N-MM-Cnet-3 and (d) N-MM-Cnet-4.

Fig. S9. Volumetric specific capacitances of the samples measured from cyclic voltammetry at different scan rates.

Fig. S10. Galvanostatic charge-discharge (CC) curves of nitrogen-doped micro/mesoporous carbon nets measured at different scan rate from 0.5 to 10 $A \cdot g^{-1}$. (a) N-MM-Cnet-1, (b) N-MM-Cnet-2, (c) N-MM-Cnet-3 and (d) N-MM-Cnet-4. At lower current density (especially at 0.5 $A \cdot g^{-1}$), the constant current charge/discharge plot of N-MM-Cnets show a longer discharge duration is ascribed to the highest contribution of pseudocapacitance.^{S1}

Fig. S11. Volumetric specific capacitances of the samples measured from galvanostatic charge-discharge at different current densities.

Fig. S12. Cyclic voltammetry (CV) curves of nitrogen-doped micro/mesoporous carbon nets measured at different scan rate from 1 to 40 mV·s⁻¹ in a symmetric supercapacitor with 0.5 M H_2SO_4 aqueous electrolyte.

Fig. S13. Galvanostatic charge-discharge (CC) curves of nitrogen-doped micro/mesoporous carbon nets measured at different scan rate from 0.5 to $10 \text{ A} \cdot \text{g}^{-1}$ in a symmetric supercapacitor. (a) N-MM-Cnet-1, (b) N-MM-Cnet-2, (c) N-MM-Cnet-3 and (d) N-MM-Cnet-4.

Fig. S14. Volumetric specific capacitances of the samples measured from galvanostatic charge-discharge at different current densities in a symmetric supercapacitor.

Fig. S15. EIS spectrum of nitrogen-doped micro/mesoporous carbon nets, which was tested in $0.5 \text{ M H}_2\text{SO}_4$ with amplitude of 5 mV, from 100 kHz to 0.01 Hz.

Sample	V _{TTIP} /mL	m _{DCDA} /g	n_{TTIP} / n_{DCDA}	$V_{\rm H2O}/mL$	V _{HCl} /mL
N-MM-Cnet-1	4.5	3.5	1 : 2.75	4.5	0.72
N-MM-Cnet-2	5	4.2	1 : 2.98	5	0.8
N-MM-Cnet-3	5.5	4.9	1:3.14	5.5	0.88
N-MM-Cnet-4	6	5.6	1:3.31	6	0.96

 Table S1. Synthesis conditions for nitrogen-doped micro/mesoporous carbon nets.

Sample	Compositions			% of total N1s		
	C /%	N /%	O /%	N-Q /%	N-5 /%	N-6 /%
N-MM-Cnet-1	87.36	6.82	5.82	52.98	34.31	12.71
N-MM-Cnet-2	87.57	7.34	5.09	56.27	28.77	14.96
N-MM-Cnet-3	85.16	8.25	6.6	58.46	32.79	8.75
N-MM-Cnet-4	85.18	8.37	6.45	54.60	33.52	11.88

Table S2. Pore parameters and chemical compositions (determined by XPS) of N-MM-Cnet materials.

Table S3. Comparison of the electrochemical performance of carbon materials in H_2SO_4 electrolyte reported in literature.

Samples	Specific	Electrolyte	Current	Capacitance	Ref.
	surface area		density	$(F \cdot g^{-1})$	
	$(m^2 \cdot g^{-1})$		$(A \cdot g^{-1})$		
N-MM-Cnet	2144	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.5	537	This work
porous carbon	1890	$1 \text{ M H}_2 \text{SO}_4$	<0.5	<140	S2
nanosheets					
porous carbon	468.9	$0.5 \text{ M H}_2\text{SO}_4$	0.2	104	S3
nanofibers					
N-doped Carbon	442	1 M H ₂ SO ₄		204.8	S4
N-rich CNTs/carbon	352	$1 \text{ M H}_2 \text{SO}_4$	0.05	167.0	S5
CNTs/N-enriched		$1 \text{ M H}_2 \text{SO}_4$		100	S6
carbon					
Carbon Nanotube	228.6	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	1	100	S7
Balls					
3D porous rGO film		$1 \text{ M H}_2 \text{SO}_4$	1	206	S 8
EM-CCG film		$1 \text{ M H}_2 \text{SO}_4$	0.1	192	S9
SSG film		$1 \text{ M H}_2 \text{SO}_4$	0.1	215	S10
MB-derived ACs	2151	$1 \text{ M H}_2 \text{SO}_4$	0.2	265	S11
HMCS	2144	$1 \text{ M H}_2 \text{SO}_4$	0.25	210	S12
Nitrogen-doped	1606	$1 \text{ M H}_2 \text{SO}_4$	5	289	S13
activated carbon					
PCNW2	1642	$1 \text{ M H}_2 \text{SO}_4$	1	291	S14
graphene hydrogel		$1 \text{ M H}_2 \text{SO}_4$	2	243	S15
Activated graphene	1315	$1 \text{ M H}_2 \text{SO}_4$	0.05	240	S16
Nitrogen-doped	1882.3	$1 \text{ M H}_2 \text{SO}_4$		405	S17
porous					
graphene/carbon					
Activated	2557.3	H_2SO_4	0.1	264	S18
microporous carbon					
CO ₂ -activated	829	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$		278.5	S19
macroscopic					
graphene					

Reference

- S1 S. Dhibar, P. Bhattacharya, G. Hatui, S. Sahoo, C. K. Das, ACS Sustainable Chem. Eng. 2014, 2, 1114-1127.
- S2 A. B. Fuertes and M. Sevilla, ACS Appl. Mater. Interfaces., 2015, 7, 4344-4353.
- S3 Y. Liu, J. Y. Zhou, L. L. Chen, P. Zhang, W. B. Fu, H. Zhao, Y. F. Ma, X. J. Pan, Z. X. Zhang, W. H. Han and E. Xie, ACS Appl. Mater. Interfaces., 2015, 7, 23515-23520.
- S4 D. Hulicova, J. Y. Yamashita, Y. Soneda, H. Hatori and M. Kodama, *Chem. Mater.*, 2005, 17, 1241-1247.
- S5 G. Lota, K. Lota and E. Frackowiak, *Electrochem. Commun.*, 2007, 9, 1828-1832.
- S6 F. Béguin, K. Szostak, G. Lota and E. Frackowiak, Adv. Mater., 2005, 17, 2380-2384.
- S7 D.-Y. Kang and J. H. Moon, ACS Appl. Mater. Interfaces., 2014, 6, 706-711.
- S8 C. Z. Yuan, L. Zhou and L. R. Hou, Mater. Lett., 2014, 124, 253-255.
- S9 X. W. Yang, C. Cheng, Y. F. Wang, L. Qiu and D. Li, Science, 2013, 341, 534-537.
- S10 X. W. Yang, J. W. Zhu, L. Qiu and D. Li, Adv. Mater., 2011, 23, 2833-2838.
- S11 J. Yin, Y. Q. Zhu, X. Yue, L. Wang, H. Zhu and C. Y. Wang, *Electrochimica Acta*, 2016, 201, 96-105.
- S12 D. Liu, G. Cheng, H. Zhao, C. Zeng, D. Y. Qu, L. Xiao, H. L. Tang, Z. Deng, Y. Li and B.-L. Su, *Nano Energy*, 2016, 22, 255-68.
- S13 F. Gao, J. Y. Qu, Z. B. Zhao, Z. Y. Wang and J. S. Qiu, *Electrochimica Acta*,2016, **190**, 1134-1141.
- S14 B. Wang, J. H. Qiu, H. X. Feng, E. Sakai and T. Komiyama, *Electrochimica Acta*, 2016, 190, 229-239.
- S15 L. B. Chen, H. Bai, Z. F. Huang and L. Li, Energy Environ. Sci., 2014, 7, 1750-1759.
- S16 M. Seredych, M. Koscinski, M. Sliwinska-Bartkowiak and T. J. Bandosz, ACS Sustainable Chem. Eng., 2013, 1, 1024-1032.
- S17 X. T. Ning, W. B. Zhong, S. C. Li, Y. X. Wang and W. T. Yang, J. Mater. Chem. A, 2014, 2, 8859-8867.
- S18 Y. S. Yun, S. Y. Cho, J. Y. Shim, B. H. Kim, S.-J. Chang, S. J. Baek, Y. S. Huh, Adv. Mater., 2013, 25, 1993-1998.
- S19 S. Yun, S.-O. Kang, S. J. Park and H. S. Park, Nanoscale, 2014, 6, 5296-5302.