Supplementary Information

Elevated salt transport of antimicrobial loose nanofiltration membranes functionalized with copper nanoparticles via a fast

bioinspired deposition

Junyong Zhu,^a Adam Uliana,^{ab} Jing Wang,^{ac} Shushan Yuan,^a Jian Li,^a Miaomiao Tian,^c Kenneth Simoens,^a Alexander Volodin,^d Jiuyang Lin,^{*e} Kristel Bernaerts,^a Yatao Zhang^c and Bart Van der Bruggen^{*a}

^a Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

^b Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States

^c School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

^{*d*} Laboratory of Solid-State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

^e School of Environment and Resources, Qi Shan Campus, Fuzhou University, No. 2 Xueyuan Road, University Town, 350116 Fuzhou, Fujian, China

*Corresponding authors: E-mail (J. Lin): linjiuyang@126.com E-mail (B. Van der Bruggen): bart.vanderbruggen@kuleuven.be

Fig. S1 Digital photos of membrane holder for membrane modification in this work

The membrane holder used in this work can be also used for interfacial polymerization. This simple device includes a supporter (to avoid contact with the solution), a seal (o-ring, to avoid solution leakage), a clamp with a screw (to fix membrane onto the holder) and a ring wall (to be a container). The PDA solution will be poured in this device with a fixed membrane; the bottom side of membrane cannot contact with the solution. Afterwards, the holder will be shaken for a while, followed by a static condition to let it self-polymerize and settle down onto the membrane surface. For co-deposition, the preparation process is similar with one-step route.

Fig. S2 Photo images of the pristine and modified membranes.

Table S1 Surface modification parameters corresponding to the assigned membranes. The two-
step deposition membranes were first modified with PDA, then rinsed with DI water, and
subsequently functionalized with CuNPs.

Membrane	PDA deposition time	CuNP deposition time	Co-deposition time	
	(h)	(h)	(h)	
PDA-HPAN-1	0.5	-	-	
PDA-HPAN-2	6	-	-	
CuNP-HPAN	-	24	-	
NF-1	0.33	24	-	
NF-2	0.5	12	-	
NF-3	0.5	18	-	
NF-4	0.5	24	-	
Co-NF-1	-	-	1.5	
Co-NF-2	-	-	3	
Co-NF-3	-	-	6	
Co-NF-4	-	-	12	
Co-NF-5	-	-	24	

Fig. S3 Surface SEM images of pristine and modified membranes in different magnifications: (a, b) PAN, (c, d) CuNP-HPAN, (e, f) PDA-HPAN-1, and (g, h) PDA-HPAN-2.

Fig. S4 The elemental analysis of pristine PAN and Co-NF-3 membrane surfaces using EDX and EDS.

Fig. S5 EDX mapping of the Co-NF-1 membrane.

		. ,			
Membrane	Dye	Dye	PWP ^a	Salt rejection	Ref.
		retention (%)	(LMH bar⁻¹)	(%)	
CMCNa ^b /PP ^c NF	Methyl blue	99.6	10.8	NaCl (0.5 g L ⁻¹):	1
	(799.8 Da)			28.8	
	Congo red	99.8		$Na_2SO_4 (0.5 g L^{-1}):$	
	(696.7 Da)			85.5	
Polypiperazine- Re amide NF	Depative block F	99.3	~7.0	NaCl (1 g L ⁻¹): 66.4	
				Na ₂ SO ₄ (0.5 g L ⁻¹):	2
	(991.0 Da)			98.5	
Polvvinvlamine-	Methyl blue			NaCl (0.5 g L ⁻¹):	
TMC ^d NF	(799.8 Da)	98.9	8.5	61.6	3
mHT ^e /PES	Reactive black 5	95.0			
	(991.8 Da)	6.3		NaCl (0.5 g L ⁻¹):	4
	Reactive red 49	90.0		~8.0	
	(576.5 Da)				
Sepro NF 2A	Congo red	00.06	10 5		
	(696.7 Da)	99.90		NaCl (0.5 g L ⁻¹):	5
	Direct red 23	00 05	10.5	25.9	5
	(813.72 Da)	55.55			
Sepro NF 6	Congo red	00.00	99.93 NaCl (0.5 g L ⁻¹):		
	(696.7 Da)	99.93		-	
	Direct red 23	1	13.7	10.7	5
	(813.72 Da)	99.8			
UTC-60	Reactive blue 2			NaCl (0.6 g l ⁻¹):	
	(774.2 Da)	99.9	~ 10.0	30.1	6
	(-)				
GO-PSBMA ^f /PES	Reactive black 5	99.2	~11.98	NaCl (0.5 g L ⁻¹):	
	(991.8 Da)			~4.0	7
	Reactive red 49	97.2		Na₂SO₄ (0.5 g L⁻¹):	
	(576.5 Da)			~10.0	
Co-NF-2	Direct red 23	99.5			
	(813.72 Da)			NaCl (0.5 g L ⁻¹):	
	Congo red	99.4	~18.2	3.3	This
	(696.7 Da)			Na ₂ SO ₄ (0.5 g L ⁻¹):	worl
	Reactive blue 2	00 0		25.2	
	(774.2 Da)	55.0			

Table S2 Performance of nanofiltration membranes throughout literature and in this work in theseparation of dyes and salts.

Notes: ^a PWP denotes pure water permeability; ^b CMCNa denotes sodium carboxymethyl

cellulose; ^c PP denotes polypropylene; ^d TMC denotes trimesoyl chloride; ^e mHT denotes modified hydrotalcite with poly(ionic liquid); ^f GO-PSBMA denotes graphene oxide modified with poly(sulfobetaine methacrylate).

REFERENCES:

- 1 S. Yu, Y. Zheng, Q. Zhou, S. Shuai, Z. Lü and C. Gao, *Desalination*, 2012, **298**, 49-58.
- 2 S. Yu, M. Liu, M. Ma, M. Qi, Z. Lü and C. Gao, J. Membr. Sci., 2010, 350, 83-91.
- 3 M. Liu, Y. Zheng, S. Shuai, Q. Zhou, S. Yu and C. Gao, *Desalination*, 2012, **288**, 98-107.
- 4 L. Yu, J. Deng, H. Wang, J. Liu and Y. Zhang, ACS Sustainable Chem. Eng., 2016, 4, 3292–3304.
- 5 J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto and B. Van der Bruggen, *J. Membr. Sci.*, 2015, **477**, 183-193.
- 6 B. Van der Bruggen, B. Daems, D. Wilms and C. Vandecasteele, *Sep. Purif. Technol.*, 2001, 22-23, 519-528.
- 7 J. Zhu, M. Tian, J. Hou, J. Wang, J. Lin, Y. Zhang, J. Liu and B. Van der Bruggen, *J. Mater. Chem. A*, 2016, **4**, 1980-1990.