## **Supporting Information**

Using confined carbonate crystals for the fabrication of nanosize metal oxide@carbon with superior lithium storage capacity

Fei Cheng, Wen-Cui Li, An-Hui Lu\*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China

Corresponding Author: An-Hui Lu

\*E-mail: anhuilu@dlut.edu.cn Phone/ fax numbers: +86-0411-84986112

## Calculation of the volume expansion ratio (R).

Parameters used in the calculation model of the volume change in manganese oxide@C anode.

| Component         | ρ, Desity             | M <sub>w</sub> , Molecular    |  |
|-------------------|-----------------------|-------------------------------|--|
|                   | (g cm <sup>-3</sup> ) | weight (g mol <sup>-1</sup> ) |  |
| MnCO <sub>3</sub> | 3.125                 | 114.95                        |  |
| MnO               | 5.45                  | 70.94                         |  |
| Li <sub>2</sub> O | 2.013                 | 29.88                         |  |
| Mn                | 7.44                  | 54.94                         |  |

The theoretical volume expansion ratio (R) of MnO is calculated using the following equation:

$$R = \frac{V_{Li_{2}O} + V_{Mn}}{V_{MnO}} = \frac{\frac{M_{Li_{2}O}}{\rho_{Li_{2}O}} + \frac{M_{Mn}}{\rho_{Mn}}}{\frac{M_{MnO}}{\rho_{MnO}}}$$

$$R = \frac{\frac{29.88}{2.013} + \frac{54.938}{7.44}}{\frac{70.94}{5.45}} \times 100\% = 171\%$$

The volume expansion ratio (R) that this structure can tolerate is calculated using the following equation:

$$R = \frac{V_{MnCO_3}}{V_{MnO}} = \frac{V_{MnCO_3}}{\frac{n_{MnO} \times M_{MnO}}{\rho_{MnO}}} = \frac{V_{MnCO_3} \times \rho_{MnO}}{\frac{m_{MnCO_3}}{M_{MnCO_3}}} \times M_{MnO} = \frac{M_{MnCO_3} \times \rho_{MnO}}{M_{MnO} \times \rho_{MnCO_3}}$$

$$R = \frac{114.95 \times 5.45}{70.94 \times 3.125} \times 100\% = 282\%$$

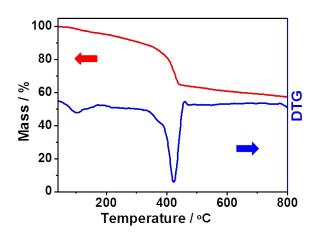



Fig. S1 TGA curve of the MnCO<sub>3</sub> cube after coating with a polymer layer produced from a dopamine precursor (MnCO<sub>3</sub>@dopamine). The measurement was conducted at a heating rate of 10 °C min<sup>-1</sup> in a nitrogen flow.

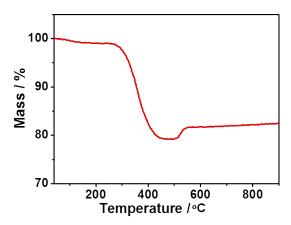



Fig. S2 TGA curve of the MnO@C hybrid. The measurement was conducted at a heating rate of 10 °C min<sup>-1</sup> in an air flow.

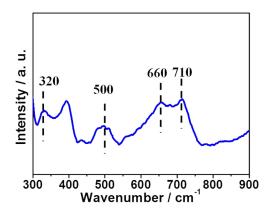



Fig. S3 Raman spectrum of the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>@C hybrid. One can see the peaks at ~660 and 320 cm<sup>-1</sup> corresponding to the stoichiometric Fe<sub>3</sub>O<sub>4</sub>. The peaks at ~500 and 710 cm<sup>-1</sup> can be ascribed to  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>.

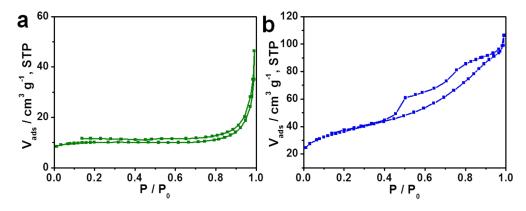



Fig. S4 (a)  $N_2$  adsorption—desorption isotherm of the CoO/Co<sub>3</sub>O<sub>4</sub>@C hybrid, (b)  $N_2$  adsorption—desorption isotherm of the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>@C hybrid.

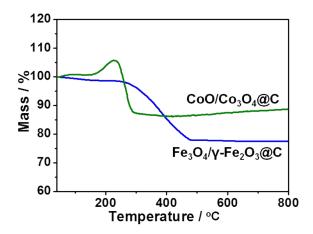



Fig. S5 TGA curves of the CoO/Co<sub>3</sub>O<sub>4</sub>@C and Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>@C hybrids. The measurements were conducted at a heating rate of 10 °C min<sup>-1</sup> in an air flow.

Table S1. The reported performances of MnO@C anodes for LIBs and the result in this study.

| Sample                                  | Initial coulombic efficiency   | Cycle number | Capacity at<br>0.2 A g <sup>-1</sup><br>(mA h g <sup>-1</sup> ) | Rate capacity (mA h g <sup>-1</sup> )      | Ref        |
|-----------------------------------------|--------------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------|------------|
| Mesoporous MnO@C                        | 71% (0.2 A g <sup>-1</sup> )   | 200          | 886                                                             | 770 (2 A g <sup>-1</sup> )<br>(300 cycles) | This study |
| GNs/MnO nanowires                       | 60.5% (0.1 A g <sup>-1</sup> ) | 200          | 723                                                             | 285 (2.5 A g <sup>-1</sup> )               | 9          |
| Hollow porous MnO/C microsphere         | 71% (0.1 A g <sup>-1</sup> )   | 50           | 600                                                             | 315 (3 A g <sup>-1</sup> )                 | 10         |
| MnO/C nanorod                           | 54.9% (0.1 A g <sup>-1</sup> ) | 100          | 721                                                             | 371 (1.6 A g <sup>-1</sup> )               | 26         |
| Microparticulate porous MnO@C           | 56% (0.1 A g <sup>-1</sup> )   | 100          | 479                                                             | 238 (0.8 A g <sup>-1</sup> )               | 29         |
| Nanosize MnO dispersed spherical carbon | 76.5% (0.5 A g <sup>-1</sup> ) | 300          | 676                                                             | 287 (2 A g <sup>-1</sup> )                 | 30         |
| MnO/C microsheets                       | 62.9% (0.1 A g <sup>-1</sup> ) | 50           | 598                                                             | 323 (2 A g <sup>-1</sup> )                 | 31         |
| Tube-like MnO/C                         | 61.5% (0.2 A g <sup>-1</sup> ) | 60           | 610                                                             | 350 (2 A g <sup>-1</sup> )                 | 33         |