Supporting Information

Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal-organic frameworks at room temperature

Jia Cheng, Xiaojun Gu,* Penglong Liu, Tianshu Wang and Haiquan Su*

Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.

1. Syntheses

1.1 Synthesis of MIL-101

According to the literature,^[1] MIL-101 was prepared by reacting terephthalic acid (332 mg, 2.0 mmol) with Cr(NO₃)₃.9H₂O (800 mg, 2.0 mmol) in the presence of aqueous HF (0.4 mL, 2.0 mmol) and deionized water (9.5 mL) at 200 °C for 8 h. The reaction produced microcrystalline green powder of MIL-101 with formula $Cr_3F(H_2O)_2O[(O_2C)C_6H_4(CO_2)]_3.nH_2O$ (n \leq 25). To eliminate the unreacted terephthalic acid, the crystalline MIL-101 product in the solution was doubly filtered off using two glass filters with pore sizes between 40 and 100 µm, and then further purified by solvothermal treatment in ethanol at 80 °C for 24 h and washed with hot ethanol. The resulting solid was soaked in NH₄F (1 M) solution at 70 °C for 24 h and immediately filtered, washed with hot water, and finally dried overnight at 150 °C under vacuum.

1.2 Synthesis of MIL-101-NO₂

According to the literature,^[2] MIL-101-NO₂ was synthesized by nitration of MIL-101 using nitrating acid (HNO₃ conc. and H_2SO_4 conc.) for five hours under ice cooling and immediately filtered, washed with water, and finally dried overnight at 150 °C under vacuum.

1.3 Synthesis of MIL-101-NH₂

According to the literature,^[2] MIL-101-NH₂ was synthesized by reduced the nitro groups of MIL-101-NO₂ to amino groups using $SnCl_2 \cdot 2H_2O$ and ethanol for 6 h at 70 °C and immediately filtered, washed with water, and finally dried overnight at 150 °C under vacuum.

1.4 Synthesis of MIL-101-SO₃H

According to the literature,^[3] MIL-101-SO₃H was prepared by dissolving monosodium 2-sulfoterephthalic acid (3.35 g, 12.5 mmol), CrO₃ (1.25 g, 12.5 mmol), and concentrated aqueous hydrochloric acid (0.91 g, 25 mmol) in water (50 mL), then transferred to a Teflon-lined stainless steel autoclave. This highly acidic solution was heated at 453 K for 6 d under the hydrothermal conditions. The reaction product was washed three times with deionized water (400 mL) and methanol (100 mL), then dried in air.

1.5 Synthesis of MOF-5-NH₂

According to the literature,^[4] MOF-5-NH₂ was prepared by reacting $Zn(NO_3)_2 \cdot 6H_2O$ (1.2 g, 4.04 mmol), 2-aminoterephthalic acid (0.24 g, 1.32 mmol) and DEF (40 mL) at 100 °C for 48 h. Cubic crystals were collected and immersed in DEF (20 mL) for 24 h (2×), followed by immersing the crystals in CHCl₃ (40 mL) for 24 h (3×). The solvent-exchanged product was vacuum-dried at 160 °C for 24 h.

1.6 Synthesis of MOF-5

According to the literature,^[4] MOF-5 was prepared by reacting $Zn(NO_3)_2 \cdot 6H_2O$ (1.2 g, 4.04 mmol), terephthalic acid (0.22 g, 1.32 mmol) and DEF (40 mL) at 100 °C for 48 h. Cubic crystals were collected and immersed in DEF (20 mL) for 24 h (2×), followed by immersing the crystals in CHCl₃ (40 mL) for 24 h (3×). The solvent-exchanged product was vacuum-dried at 160 °C for 24 h.

1.7 Synthesis of SBA-15-NH₂

According to the literature,^[5] SBA-15 (0.3 g) was suspended in anhydrous toluene (30 ml), and then APTES (0.1 ml) was added to the mixture. The solution was refluxed for 24 h. After that, the solution was cooled down to room temperature, and the product was centrifuged, washed thoroughly with MeOH. The resulting product was placed under high vacuum to remove the remaining solvent in the mesopores.

1.8 Synthesis of SBA-15

According to the literature,^[6] P123 (2 g) was stirred with 15 mL of deionized water at 35 °C until fully dissolved, followed by adding HCl solution (2 M, 30 g) and addition of TEOS (4.4 g). The mixture was allowed to stir at 35 °C for 24 h before transferring into a Teflon bottle sealed in an autoclave, which was then heated to 100 °C for 2 days in an oven. The solid was filtered off, washed three times with deionized water, and calcined at 500 °C for 4 h.

1.9 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NO₂

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NO₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NO₂.

1.10 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-SO₃H

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-SO₃H (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-SO₃H.

1.11 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101 (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101.

1.12 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5-NH₂

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MOF-5-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5-NH₂.

1.13 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MOF-5 (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5.

1.14 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15-NH₂

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated SBA-15-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15-NH₂.

1.15 Synthesis of Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15

HAuCl₄·4H₂O (0.0115 g, 0.028 mmol), Na₂PdCl₄ (0.0138 g, 0.047 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated SBA-15 (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15.

1.16 Synthesis of Au_{0.19}Pd_{0.56}Co_{0.25}/MIL-101-NH₂

HAuCl₄·4H₂O (0.0078 g, 0.019 mmol), Na₂PdCl₄ (0.0165 g, 0.056 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.19}Pd_{0.56}Co_{0.25}/MIL-101-NH₂.

1.17 Synthesis of Au_{0.375}Pd_{0.375}Co_{0.25}/MIL-101-NH₂

HAuCl₄·4H₂O (0.0154 g, 0.0375 mmol), Na₂PdCl₄ (0.011 g, 0.0375 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing

 $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.375}Pd_{0.375}Co_{0.25}/MIL-101-NH₂.

1.18 Synthesis of Au_{0.47}Pd_{0.28}Co_{0.25}/MIL-101-NH₂

HAuCl₄·4H₂O (0.0194 g, 0.047 mmol), Na₂PdCl₄ (0.0082 g, 0.028 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.47}Pd_{0.28}Co_{0.25}/MIL-101-NH₂.

1.19 Synthesis of Au_{0.32}Pd_{0.53}Co_{0.15}/MIL-101-NH₂

 $HAuCl_4 \cdot 4H_2O$ (0.013 g, 0.032 mmol), Na_2PdCl_4 (0.0156 g, 0.053 mmol) and $Co(NO_3)_2 \cdot 6H_2O$ (0.0044 g, 0.015 mmol) were dispersed in deionized H_2O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H_2O (2 mL) containing $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain $Au_{0.32}Pd_{0.53}Co_{0.15}/MIL-101-NH_2$.

1.20 Synthesis of Au_{0.24}Pd_{0.41}Co_{0.35}/MIL-101-NH₂

HAuCl₄·4H₂O (0.01 g, 0.024 mmol), Na₂PdCl₄ (0.012 g, 0.041 mmol) and Co(NO₃)₂·6H₂O (0.01 g, 0.035 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.24}Pd_{0.41}Co_{0.35}/MIL-101-NH₂.

1.21 Synthesis of Au_{0.34}Pd_{0.56}Co_{0.1}/MIL-101-NH₂

HAuCl₄·4H₂O (0.014 g, 0.034 mmol), Na₂PdCl₄ (0.016 g, 0.056 mmol) and Co(NO₃)₂·6H₂O (0.003 g, 0.01 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.34}Pd_{0.56}Co_{0.1}/MIL-101-NH₂.

1.22 Synthesis of Au_{0.26}Pd_{0.44}Co_{0.3}/MIL-101-NH₂

HAuCl₄·4H₂O (0.011 g, 0.026 mmol), Na₂PdCl₄ (0.013 g, 0.044 mmol) and Co(NO₃)₂·6H₂O (0.087 g, 0.03 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.26}Pd_{0.44}Co_{0.3}/MIL-101-NH₂.

1.23 Synthesis of Au_{0.225}Pd_{0.375}Co_{0.4}/MIL-101-NH₂

HAuCl₄·4H₂O (0.0093 g, 0.0225 mmol), Na₂PdCl₄ (0.011 g, 0.0375 mmol) and Co(NO₃)₂·6H₂O (0.0116 g, 0.04 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.225}Pd_{0.375}Co_{0.4}/MIL-101-NH₂.

1.24 Synthesis of Au_{0.75}Co_{0.25}/MIL-101-NH₂

HAuCl₄·4H₂O (0.031 g, 0.075 mmol) and Co(NO₃)₂·6H₂O (0.0073 g, 0.025 mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au_{0.75}Co_{0.25}/MIL-101-NH₂.

1.25 Synthesis of Au_{0.38}Pd_{0.62}/MIL-101-NH₂

 $HAuCl_4 \cdot 4H_2O$ (0.0156 g, 0.038 mmol), Na_2PdCl_4 (0.0182 g, 0.062 mmol) were dispersed in deionized H_2O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H_2O (2 mL) containing $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain $Au_{0.38}Pd_{0.62}/MIL$ -101-NH₂.

1.26 Synthesis of Pd_{0.75}Co_{0.25}/MIL-101-NH₂

 Na_2PdCl_4 (0.022 g, 0.075 mmol) and $Co(NO_3)_2 \cdot 6H_2O$ (0.0073 g, 0.025 mmol) were dispersed in deionized H_2O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H_2O (2 mL) containing $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain $Pd_{0.75}Co_{0.25}/MIL$ -101- NH_2 .

1.27 Synthesis of Au/MIL-101-NH₂

HAuCl₄·4H₂O (0.0412 g, 0.1 mmol), were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL) containing NaBH₄ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Au/MIL-101-NH₂.

1.28 Synthesis of Pd/MIL-101-NH₂

 Na_2PdCl_4 (0.0294 g, 0.1mmol) were dispersed in deionized H_2O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H_2O (2 mL) containing $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Pd/MIL-101-NH₂.

1.29 Synthesis of Co/MIL-101-NH₂

 $Co(NO_3)_2 \cdot 6H_2O$ (0.029, 0.1mmol) were dispersed in deionized H₂O (4 mL). Then, activated MIL-101-NH₂ (0.04 g) was added into the solution with stirring for 2 h. After that, the deionized H₂O (2 mL)

containing $NaBH_4$ (0.06 g) was added into the above mixture, which was vigorously stirred in Ar atmosphere for 2 h to obtain Co/MIL-101-NH₂.

2. Calculation Methods

The turnover frequency (TOF) reported here is an apparent TOF value based on the number of metal atoms in catalyst, which is calculated from the equation as follow:

$$TOF = \frac{P_{\rm atm}V_{\rm gas} / RT}{2n_{\rm metal}t}$$

Where P_{atm} (88.8 kPa) is the atmospheric pressure in Hohhot of Inner Mongolia, V_{gas} is the volume of generated H₂ and CO₂, R is the universal gas constant (8.314 m³ Pa mol⁻¹ K⁻¹), T is the room temperature (298 K), n_{metal} is the total mole number of metal atoms in catalyst, and t is the reaction time.

Fig. S1 TEM image of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ and the corresponding size distribution histogram of AuPdCo NPs.

Fig. S2 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$.

Fig. S3 TEM image of $Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH_2$ and the corresponding size distribution histogram of AuPdFe NPs.

Fig. S4 EDS pattern of Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH₂.

Fig. S5 (a) TEM, (b) HAADF-STEM images of $Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH_2$ and the corresponding elemental mappings for (c) Au, (d) Pd, (e) Fe, (f) Cr, (g) N, (h) O and (i) C.

Fig. S6 TEM image of $Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL-101-NH_2$ and the corresponding size distribution histogram of AuPdNi NPs.

Fig. S7 EDS pattern of $Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL\text{-}101\text{-}NH_2.$

Fig. S8 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL\text{--}101$.

Fig. S9 PXRD patterns of (a) MIL-101-NH₂, (b) $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$, (c) $Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH_2$ and (d) $Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL-101-NH_2$.

Fig. S10 PXRD patterns of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ and Au, Pd and Co in JCPDS.

Fig. S11 IR spectra of (a) MIL-101, (b) MIL-101-NH₂, (c) MIL-101-NO₂ and (d) MIL-101-SO₃H.

Fig. S12 IR spectra of (a) MIL-101-NH₂, (b) $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$, (c) $Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH_2$ and (d) $Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL-101-NH_2$.

Fig. S13 XPS patterns in (a) Au 4f regions of Au/MIL-101-NH₂ and Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂, (b) Pd 3d regions of Pd/MIL-101-NH₂ and Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂ and (c) Co 2p regions of Co/MIL-101-NH₂ and Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂.

Fig. S14 XPS patterns for $Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH_2$.

Fig. S15 XPS patterns for $Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL\text{-}101\text{-}NH_2.$

Fig. S16 XPS patterns for $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NO_2$.

Fig. S17 XPS patterns for $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-SO_3H$.

Fig. S18 N_2 adsorption-desorption isotherms of MIL-101-NH₂, Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂, Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL-101-NH₂ and Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL-101-NH₂.

Fig. S19 N₂ adsorption-desorption isotherms of MIL-101-NH₂, MIL-101-NO₂ and MIL-101-SO₃H.

Fig. S20 Plots of time versus volume of the generated gas (H₂ and CO₂) from (a) FA-SF aqueous solution and (b) SF solution over Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂ ($n_{\text{metal}}/n_{\text{FA}} = 0.0125$, $n_{\text{metal}}/n_{\text{SF}} = 0.0125$) at 298 K.

Fig. S21 Plot of time versus volume of the gas generated gas (H₂ and CO₂) from FA-SF aqueous solution with different FA/SF molar ratios over Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂ ($n_{\text{metal}}/n_{\text{FA}} = 0.0125$) at 298 K.

Fig. S22 Plot of time versus temperature during the decompositon of FA in the FA-SF aqueous solution over Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂ ($n_{\text{metal}}/n_{\text{FA}} = 0.0125$, $n_{\text{metal}}/n_{\text{SF}} = 0.0125$).

Fig. S23 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL\text{-}101\text{-}NO_2.$

Fig. S24 EDS pattern of Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-SO₃H.

Fig. S25 Plot of time versus volume of the generated gas (H₂ and CO₂) from FA-SF aqueous solution over (a) $Au_{0.28}Pd_{0.47}Co_{0.25}/MOF$ -5-NH₂ and (b) $Au_{0.28}Pd_{0.47}Co_{0.25}/MOF$ -5 ($n_{metal}/n_{FA} = 0.0125$) at 298 K.

Fig. S26 TEM image of $Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5-NH_2$ and the corresponding size distribution histogram of AuPdCo NPs.

Fig. S27 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5-NH_2$.

Fig. S28 TEM image of Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5 and the corresponding size distribution histogram of AuPdCo NPs.

Fig. S29 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MOF-5$.

Fig. S30 Plot of time versus volume of the generated gas (H₂ and CO₂) from FA-SF aqueous solution over (a) $Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15$ -NH₂ and $Au_{0.28}Pd_{0.47}Co_{0.25}/SBA-15$ ($n_{\text{metal}}/n_{\text{FA}} = 0.0125$) at 298 K.

Fig. S31 Plot of time versus volume of generated gas (H_2 and CO_2) from FA-SF aqueous solution over $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ with re-addition of 8.0 mmol of FA at 298 K.

Fig. S32 TEM image of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ after the decomposition of FA and the corresponding size distribution histogram of AuPdCo NPs.

Fig. S33 EDS pattern of $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ after catalysis.

Fig. S34 Plot of time versus volume of generated gas (H_2 and CO_2) from FA-SF aqueous solution over $Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH_2$ with re-addition of 64.0 mmol of FA at 298 K.

Fig. S35 TEM image of spent catalyst Au_{0.28}Pd_{0.47}Co_{0.25}/MIL-101-NH₂ after nine catalytic cycles.

Table S1 ICP analyses for the samples.

Commis		Atom ratio
Sample	Metal content (wt %)	(Au:Pd:M)
Au _{0.28} Pd _{0.47} Co _{0.25} /MIL-101-NH ₂	Au, 10.25; Pd, 9.31; Co, 2.65	0.283:0.467:0.25
Au _{0.28} Pd _{0.47} Fe _{0.25} /MIL-101-NH ₂	Au, 10.31; Pd, 9.36; Fe, 2.55	0.281:0.473:0.246
Au _{0.28} Pd _{0.47} Ni _{0.25} /MIL-101-NH ₂	Au, 10.28; Pd, 9.30; Ni, 2.59	0.284:0.475:0.241
Au _{0.28} Pd _{0.47} Co _{0.25} /MIL-101-NO ₂	Au, 10.33; Pd, 9.21; Co, 2.62	0.285:0.472:0.243
Au _{0.28} Pd _{0.47} Co _{0.25} /MIL-101-SO ₃ H	Au, 10.22; Pd, 9.33; Co, 2.50	0.285:0.481:0.234
Au _{0.28} Pd _{0.47} Co _{0.25} /MIL-101	Au, 10.18; Pd, 9.30; Co, 2.55	0.284:0.479:0.237
Au _{0.19} Pd _{0.56} Co _{0.25} /MIL-101-NH ₂	Au, 7.01; Pd, 11.32, Co, 2.56	0.193:0.573:0.234
Au _{0.375} Pd _{0.375} Co _{0.25} /MIL-101-NH ₂	Au, 13.47; Pd, 7.24; Co, 2.49	0.383:0.381:0.236
Au _{0.47} Pd _{0.28} Co _{0.25} /MIL-101-NH ₂	Au, 16.90; Pd, 5.27; Co, 2.47	0.484:0.279:0.237
Au _{0.34} Pd _{0.56} Co _{0.1} /MIL-101-NH ₂	Au, 12.20; Pd, 10.87; Co, 1.00	0.343:0.562:0.095
Au _{0.32} Pd _{0.53} Co _{0.15} /MIL-101-NH ₂	Au, 11.60; Pd, 10.29; Co, 1.56	0.323:0.531:0.146
Au _{0.26} Pd _{0.44} Co _{0.3} /MIL-101-NH ₂	Au, 9.59; Pd, 8.70; Co, 3.21	0.263:0.442:0.295
Au _{0.24} Pd _{0.41} Co _{0.35} /MIL-101-NH ₂	Au, 9.12; Pd, 8.31; Co, 3.80	0.245:0.413:0.342
Au _{0.225} Pd _{0.375} Co _{0.4} /MIL-101-NH ₂	Au, 8.40; Pd, 7.60; Co, 4.40	0.226:0.378:0.396
Au _{0.28} Pd _{0.47} Co _{0.25} /MOF-5-NH ₂	Au, 10.30; Pd, 9.33; Co, 2.52	0.286:0.480:0.234
Au _{0.28} Pd _{0.47} Co _{0.25} / MOF-5	Au, 10.30; Pd, 9.26; Co, 2.49	0.288:0.479:0.233
Au _{0.28} Pd _{0.47} Co _{0.25} /SBA-15-NH ₂	Au, 10.25; Pd, 9.35; Co, 2.53	0.285:0.480:0.235
Au _{0.28} Pd _{0.47} Co _{0.25} / SBA-15	Au, 10.20; Pd, 9.28; Co, 2.50	0.285:0.481:0.234
Au _{0.38} Pd _{0.62} /MIL-101-NH ₂	Au, 13.51; Pd, 11.89	0.38:0.62
Pd _{0.75} Co _{0.25} /MIL-101-NH ₂	Pd, 15.68; Co, 2.69	0.764:0.236
Pd/MIL-101-NH ₂	Pd, 20.28	/

Catalyst	Т	TOF	Reference
	(K)	(h^{-1})	
Au _{0.28} Pd _{0.47} Co _{0.25} /MIL-101-NH ₂	298	347	This work
$Au_{0.28}Pd_{0.47}Fe_{0.25}/MIL101NH_2$	298	261	This work
$Au_{0.28}Pd_{0.47}Ni_{0.25}/MIL101NH_2$	298	217	This work
$Au_{0.28}Pd_{0.47}Co_{0.25}/MIL101NO_2$	298	5	This work
$Au_{0.28}Pd_{0.47}Co_{0.25}/MIL101SO_3H$	298	4.9	This work
$Au_{0.28}Pd_{0.47}Co_{0.25}/MIL101$	298	2	This work
$Au_{0.19}Pd_{0.56}Co_{0.25}/MIL101NH_2$	298	334	This work
$Au_{0.375}Pd_{0.375}Co_{0.25}/MIL101NH_2$	298	132	This work
$Au_{0.47}Pd_{0.28}Co_{0.25}/MIL101NH_2$	298	92	This work
$Au_{0.32}Pd_{0.53}Co_{0.1}/MIL101NH_2$	298	400	This work
$Au_{0.32}Pd_{0.53}Co_{0.15}/MIL101NH_2$	298	376	This work
$Au_{0.32}Pd_{0.53}Co_{0.3}/MIL101NH_2$	298	257	This work
$Au_{0.24}Pd_{0.41}Co_{0.35}/MIL101NH_2$	298	177	This work
$Au_{0.32}Pd_{0.53}Co_{0.4}/MIL101NH_2$	298	156	This work
PdAu/C-CeO ₂	365	113.1	S7
AuPd/ED-MIL-101	363	106	S8
Ag@Pd/C	293	125	S9
Au/ZrO ₂	298	252	S10
Pd/C	298	64	S11
Ag _{0.1} Pd _{0.9} /rGO	295	105.2	S12
$Co_{0.30}Au_{0.35}Pd_{0.35}/C$	298	80	S13
Pd@CN	288	71	S14
$C-Ag_{42}Pd_{58}$	323	382	S15
Pd/MSC-30	298	750	S16
Pd/C-NaBH ₄	303	304	S17
Pd-B/C	303	1184	S17
$Ni_{0.40}Au_{0.15}Pd_{0.45}/C$	298	12.4	S18
AuPd-MnO _x /ZIF-8-rGO	298	382.1	S19
Au _{0.75} Pd _{0.25} /C-L-7.5	298	718	S20
PdAu-MnO _x /N-SiO ₂	298	785	S21

Table S2 TOF values for dehydrogenation of FA catalysed by different catalysts.

References

- [S1] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé and I. Margiolaki, Science, 2005, 309, 2040–2042.
- [S2] S. Bernt, V. Guillerm, C. Serre and N. Stock, Chem. Commun., 2011, 47, 2838–2840.

- [S3] G. Akiyama, R. Matsuda, H. Sato, M. Takata and S. Kitagawa, Adv. Mater., 2011, 23, 3294–3297.
- [S4] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O.M. Yaghi, *Science*, 2002, 295, 469–472.
- [S5] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024– 6036.
- [S6] S. Huh, J. W. Wiench, J.-C. Yoo, M. Pruski and V. S.-Y. Lin, Chem. Mater., 2003, 15, 4247– 4256.
- [S7] X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao and T. Lu, Chem. Commun., 2008, 3540–3542.
- [S8] X. Gu, Z.-H. Lu, H.-L. Jiang, K. Akita and Q. Xu, J. Am. Chem. Soc., 2011, 133, 11822– 11825.
- [S9] K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith and S. C. E Tsang, *Nat. Nanotechnol.*, 2011, 6, 302–307.
- [S10] Q.-Y. Bi, X.-L. Du, Y.-M. Liu, Y. Cao, H.-Y. He and K.-N. Fan, J. Am. Chem. Soc., 2012, 134, 8926–8933.
- [S11] Z.-L. Wang, J.-M. Yan, H.-L. Wang, Y. Ping and Q. Jiang, Sci. Rep., 2012, 2, 598-603.
- [S12] Y. Ping, J.-M. Yan, Z.-L. Wang, H.-L. Wang and Q. Jiang, J. Mater. Chem. A, 2013, 1, 12188–12191.
- [S13] Z. -L. Wang, J. -M. Yan, Y. Ping, H. -L. Wang, W. -T. Zheng and Q. Jiang, Angew. Chem. Int. Ed., 2013, 52, 4406–4409.
- [S14] Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, X. Wei, K.-X. Wang and J.-S. Chen, Angew. Chem., Int. Ed., 2013, 52, 11822–11825.
- [S15] S. Zhang, Ö. Metin, D. Su and S. Sun, Angew. Chem., Int. Ed., 2013, 52, 3681-3684.
- [S16] Q.-L. Zhu, N. Tsumori and Q. Xu, Chem. Sci., 2014, 5, 195–199.
- [S17] K. Jiang, K. Xu, S. Zou and W.-B. Cai, J. Am. Chem. Soc., 2014, 136, 4861-4864.
- [S18] Z.-L. Wang, Y. Ping, J.-M. Yan, H.-L. Wang and Q. Jiang, *Inter. J. Hydrogen Energy*, 2014, 39, 4850–4856.
- [S19] J.-M. Yan, Z.-L. Wang, L. Gu, S.-J. Li, H.-L. Wang, W.-T. Zheng and Q. Jiang, Adv. Energy Mater., 2015, 5, 1500107.
- [S20] J. Cheng, X. Gu, X. Sheng, P. Liu and H. Su, J. Mater. Chem. A, 2016, 4, 1887–1894.
- [S21] Y. Karatas, A. Bulut, M. Yurderi, I. E. Ertas, O. Alal, M. Gulcan, M. Celebi, H. Kivrak, M. Kaya and M. Zahmakiran, *Appl. Catal. B: Environ.*, 2016, 180, 586–595.