Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Nitrogen-Sulfur Co-doped Porous Graphene as a Sulfur

Immobilizer for Lithium Sulfur Battery

Jing Xu, Dawe Su, Wenxue Zhang, Weizhai Bao, Guoxiu Wang*

Centre for Clean Energy Technology, School of Mathematical and Physical Sciences,

Faculty of Science, University of Technology Sydney, NSW 2007, Australia.

*E-mail: <u>Guoxiu.Wang@uts.edu.au</u>

Figure S1 SEM image of NSG.

Figure S2 (a, b) TEM images of A-NSG. (c, d) High-magnification TEM images of the A-NSG@S.

Figure S3 Thermogravimetric curves of pure sulfur powder and A-NSG@S in the N_2 with a heating rate of 10 °C min⁻¹.

Figure S4 The SAED pattern of A-NSG@S.

Figure S5 Optimized configurations for the adsorption of Li_2S on pyridinic and pyrrolic N sites (a, b), Li_2S_4 on pyridinic and pyrrolic N sites (c, d) with corresponding adsorption energies in eV and atom Mulliken charge. Gray, blue, yellow, and purple balls represent C, N, S, and Li atoms, respectively.

FigureS6 (a) Li_2S_4 solution (b) Initially mixed (c) Aging for 3h (d)Aging for 24h.

<u>Figure S7 UV-vis spectra of 5 mM pristine Li_2S_4 solution and solution</u>

after soaking the N, S-graphene.

Figure S8 High-resolution XPS of the N,S co-doped electrode after discharged to 2.1 V. (a) Li 1s, (b) S 2p spectra of N,S graphene- Li_2S_x .

Figure S9. High-resolution S 2p spectra of N,S graphene@ S

	carbon % (atom %)	fwhm (eV)	
Graphene	93.4%	1.13	
A-NSG	89.81 %	1.21	

TableS1Percentage of Carbon atoms and Full width at Half-MaximumValues of C 1s Peaks in Graphene, A-NSG.

Sample	C (at%)	O (at%)	N (at%)	S (at%)	C/O
GO	70.2	29.8	_	_	2.4
A-NSG	89.81	5.16	4.18	0.85	17.25

TableS2Carbon, oxygen, nitrogen, sulfur atomic percent of GO, A-NSG materials.

graphene and N,S-graphene with $L_{12}S$, and $L_{12}S_4$.						
$E_{\rm ads}~({\rm eV})$	Granhana	Pyridinic like	Pyrrolic like	N, S doped	-	
	Oraphene	graphene	graphene	Graphene		
Li ₂ S	-0.94	-1.41	-1.15	-1.85		
Li_2S_4	-0.49	-1.01	-0.68	-1.25		

Table S3a Comparisons of the adsorption energies of graphene, Ngraphene and N,S-graphene with Li_2S , and Li_2S_4 .

Table S3b Comparisons of the atomic charge transfers (QT) of graphene, N-graphene and N,S-graphene with Li2S, and Li2S4.

$Q_{\mathrm{T}}\left(e ight)$	Graphene	Pyridinic N	Pyrrolic N	N, S doped Gr
Li ₂ S	0.227	0.787	0.69	0.555
Li_2S_4	0.019	0.12	1.15	0.317

Figure S10 Long-term cycling performance test of the A-NSG@S electrode at 1C discharge rate and the corresponding Coulombic efficiency

 Table
 S4
 Parameters identification by modeling the impedance spectra

in Figure 9b.

Cycle	R _e	R _{ct} (ohm)	R_g	$Y_1(\Omega^{\text{-1}} \cdot \text{cm}^{\text{-2}} \cdot \text{s}^{\text{-n}})$	n 1	$Y_2(\Omega^{-1} \cdot cm^{-2} \cdot s^{-n})$	n 2
number	(ohm)		(ohm)				
Pristine	7.23	34.71	-	0.000027	0.757	-	-
1	7.98	36.23	18.23	0.00003	0.84	0.087	0.93
600	8.329	41.56	23.23	0.0009	0.6523	0.1094	0.865

Figure S11 Cycling performance of A-NSG@S material cycled at 0.2C, in comparison with NSG@S, A-G@S, rGO@S material. Specific capacity values were all calculated based on the mass of sulfur.

Figure S12 Electrochemical characterization of graphene as the cathode of a Li-S battery. (a) Cyclic voltammetry (CV). (b) Galvanostatic charge and discharge profiles for different cycles at 0.2C. (c) Discharge/Charge capacity cycled at various rates from 0.1 C, 0.5C, 1C, 2C, 5C (d) Electrochemical impedance spectra of graphene@S lithium-sulfur battery at different cycles.(e) Long term cycling performance of graphene@S.

TableS5Recent advance in the dual doped carbon framework to host

Carbon Composites	Cycle life(cycles)	Decay Rate(per cycle)	Ref
A-NSG(N,S doped porous graphene)	600	0.056%	This work
N,S-graphene	500	0.078%	Nature Commun. 2015, 6, 7760
N,S doped carbon	500	0.065%	Adv Mater. 2015, 27, 6021-6028
N,O doped CNTs	200	0.15%	Adv Mater Interfaces. 2014, 1, 1400227
N,O-graphene	350	0.057%	Nature Commun. 2014, 5, 5002
N,O-doped porous carbon	200	0.05%	Angew Chem Int Ed. 2015, 54, 4325–4329

sulfur for Li-S batteries