#### **Electronic Supplementary Information (ESI)**

## Quasi-solid-state quantum dot sensitized solar cells with power conversion

## efficiency over 9% and high stability

Wenliang Feng, Leilei Zhao, Jun Du, Yan Li\* and Xinhua Zhong\*

### Preparation of Zn-Cu-In-Se QDs

The oil-soluble Zn-Cu-In-Se (ZCISe) QDs were synthesized according to our previous method.<sup>1</sup> First, a DPP-Se precursor was prepared by dissolving Se powder (0.024 g, 0.3 mmol) into 0.8 mL of DPP and OAm (v/v, 3:5) at room temperature to form a bright yellow solution. And a Zn(OAc)<sub>2</sub> stock solution was prepared by dissolving Zn(OAc)<sub>2</sub> (0.011 g, 0.04 mmol) into 5 mL of OAm and ODE (v/v, 1: 4) at 120 °C. In the typical synthetic process, a mixture of CuI (19.0 mg, 0.1 mmol), In(OAc)<sub>3</sub> (29.0 mg, 0.1 mmol), OAm (2.0 mL), ODE (1.5 mL) and 0.4 mL of the above Zn(OAc)<sub>2</sub> stock solution were loaded in a 50 mL three necked flask. Under the protection of N<sub>2</sub>, the mixture was heated to 200 °C followed by injecting 0.8 mL of the above DPP-Se precursor into the reaction system under stirring. The reaction was proceeded 5 min before cooled to 90 °C. The initial OAm-capped ZCISe QDs were purified by centrifugation and decantation with the addition of excessive ethanol and acetone. The purified oil-soluble ZCISe QD precipitate was redissolved in 10 mL of dichloromethane. The watersoluble MPA capped ZCISe QDs was prepared using similar method by replacing TGA with MPA.<sup>1,2</sup>

#### Preparation of the Zn-Cu-In-Se sensitized photoanodes

The ZCISe sensitized photoanodes were obtained by droping 45  $\mu$ L of MPA-capped ZCISe QD aqueous dispersion onto the TiO<sub>2</sub> mesoporous film and standing for 2 h. The obtained photoanodes was then passivated by 6 ZnS layers (0.1 M Zn(OAc)<sub>2</sub> methanol solution and 0.1 M Na<sub>2</sub>S aqueous solution for 1 min/dip).



Fig. S1 J-V curves of ZCISe sensitized solar cells based on liquid and gel electrolytes.

**Table S1** Photovoltaic parameters of ZCISe sensitized solar cells based on liquid and gel electrolytes.

| Cells   | $J_{\rm sc} ({\rm mA}\cdot{\rm cm}^{-2})$ | $V_{ m oc}$ (V) | FF (%)       | PCE (%)         |
|---------|-------------------------------------------|-----------------|--------------|-----------------|
| L-QDSCs | 26.01(26.10)                              | 0.601(0.602)    | 58.37(58.24) | 9.12±0.02(9.15) |
| G-QDSCs | 25.59(25.67)                              | 0.609(0.611)    | 58.75(58.59) | 9.16±0.04(9.19) |

<sup>a</sup> Average parameters and standard deviation based on 5 solar cells in parallel. The numbers in parentheses represent the values obtained for the champion cells.



**Fig. S2** EIS of ZCISe sensitized L-QDSCs and G-QDSCs: (a) chemical capacitance  $C_{\mu}$ ; (b) recombination resistance  $R_{rec}$ ; (c) Nyquist plots at -0.60 V forward bias.

| The Cells | $R_{\rm s} \left( \Omega \cdot {\rm cm}^2 \right)$ | $R_{\rm CE}(\Omega \cdot {\rm cm}^2)$ | $R_{\rm rec} \left( \Omega \cdot { m cm}^2  ight)$ | $C_{\mu} (\mathrm{mF}\cdot\mathrm{cm}^{-2})$ |
|-----------|----------------------------------------------------|---------------------------------------|----------------------------------------------------|----------------------------------------------|
| L-QDSCs   | 22.23                                              | 4.72                                  | 225.9                                              | 5.1                                          |
| G-QDSCs   | 22.62                                              | 5.15                                  | 267.6                                              | 4.9                                          |

**Table S2** Simulated values of resistance (R) and capacitance (C) under the forward bias of -0.60 V of ZCISe sensitized L-QDSCs and G-QDSCs.



**Fig. S3** Open circuit voltage decay (OCVD) measurements of ZCISe sensitized L-QDSCs and G-QDSCs: (a) the  $V_{oc}$  decay curves. (b) the electron life time extracted from OCVD.

# References

- J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong and L.-J. Wan, J. Am. Chem. Soc. 2016, 138, 4201–4209.
- 2 W. Li and X. Zhong, J. Phys. Chem. Lett., 2015, 6, 796-806.