Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

SI Figure S1. Powder XRD patterns of $75Na_2S-25P_2S_5$ samples synthesized by ball milling at rotation speed of 500 rpm for different milling time.

SI Figure S2. Powder XRD patterns of $75Na_2S-25P_2S_5$ samples synthesized by ball milling at rotation speed of 400 rpm from 5 to 10 h. (The samples milled 5 and 10 h have been depicted just for comparison)

SI Figure S3. Complex impedance plots for the final mixture ball milled with 400 rpm at 30 h and 500 rpm at 20 and 30 h.

SI Figure S4. The XRD patterns of the sample annealed at 450 °C for different durations (2, 5, 8, and 10 h).

SI Figure S5. The XRD patterns of the sample annealed at 250, 260, 270, 280, 290 and 300 °C for 2 h and then quenched. The patterns of the sample annealed at 250 and 300 °C were just exhibited for comparison.

SI Figure S6. XRD patterns of the final cubic and tetragonal Na₃PS₄ materials at room temperature. The XRD patterns can be quantitatively be compared because

the patterns were collected with the same holder, on the same amount of material, with the same X-ray footprint and with the same exposure time. The higher background starting at approximately 25° 2θ for the cubic material, annealed at 250 °C for 2 hours, compared to the tetragonal material, annealed at 450 °C for 8 hours, indicates a significantly larger amorphous fraction in the cubic Na₃PS₄ material.

SI Figure S7. (a) The XRD patterns of sulphur with carbon and cubic the Na_3PS_4 glass-ceramic after different mechanical milling conditions. The XRD pattern of the as-prepared cubic Na_3PS_4 after 250 °C/2 h is also shown for comparison. (b) Cyclic voltammetry tests of the all-solid-state cells with the cubic Na_3PS_4 , S-C composite electrode and Na-metal negative electrode at a scanning rate of 0.05 mVs⁻¹ between 1.0 V and 3.0 V at room temperature.

SI Figure S8. XRD refinement of cubic Na_3PS_4 at (a) 223 K, (b) 293 K and (c) of tetragonal Na_3PS_4 at 293 K (c).

SI Figure S9. An overlay of 23 Na spectra of the (a) cubic and (b) tetragonal Na₃PS₄ measured under MAS at 9.4 T at a spinning frequency of 12.5 kHz in the temperature window of 233 K- 453 K.

SI Figure S10. The T_1 relaxation times for tetragonal and cubic Na_3PS_4 probed by MAS NMR.

SI Figure S11. Temperature dependence of the ²³Na NMR SLR rates (1/T_{1p}) in the rotating-frame of reference of cubic (a) and tetragonal (b) Na₃PS₄ glass-ceramics. T_{1p}'s were measured at $\omega_1/2\pi$ values of 31 and 62 kHz respectively. The black, red and green dash line in the figure indicated the fitting result of the T_{1p} of the cubic Na₃PS₄ glass-ceramics. Static solid state NMR measurements were performed on a Varian 600 spectrometer (B₀=14.1 T) for which the ²³Na resonance frequency amounts 158.746 MHz. The $\pi/2$ pulse length was determined to be 9 µs with an RF field strength of 62 kHz. Chemical shifts were referenced with respect to a 0.1 M NaCl solution. The air sensitive materials were sealed in a custom-made Teflon tube in an Argon filled glove box (H₂O, O₂ < 0.3 ppm). Variable temperature measurements were performed using a 5 mm static goniometer probe from -50 °C to +175 °C.

Sample	Atom (ox.)	Fractional coordinates				Occupancy	Uiso
Na_3PS_4		х	У	Z			
	Na1	0.5	0.5	0	6	0.9348	0.09962
	Na2	0.75	0.5	0	12	0.0330	0.09962
	Р	0	0	0	2	1.0000	0.03439
	S	0.1670	0.1670	0.1670	8	1.0000	0.03868

Table 1. Refined structure data of cubic Na_3PS_4 at 223 K.