Supporting Information

Enhanced crystallization and stability of perovskites by a crosslinkable fullerene for high-performance solar cells

Meng Li,^{‡a} Yi-Hsiang Chao,^{‡b} Tin Kang,^b Zhao-Kui Wang,^{*a} Ying-Guo Yang,^c Shang-Lei Feng,^c Yun Hu,^a Xing-Yu Gao,^c Liang-Sheng Liao,^{*a} and Chain-Shu Hsu^{*b}

^a Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China ^b Demantment of Applied Chemistry, National China, Tung University, 1001 To Haush Boad Hein, Chu

^b Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road Hsin-Chu, Taiwan 30010

^c Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

Corresponding Authors: zkwang@suda.edu.cn (L.S.Liao); cshsu@mail.nctu.edu.tw (C.S.Hsu)

Keywords: perovskite solar cells; perovskite crystallization; stability; cross-linkable fullerene;

Table of Contents

Figure S1. Preparation of CH₃NH₃PbI_{*x*}Cl_{3-*x*}: PCBSD precursor solution.

Figure S2. Performance of CH₃NH₃PbI_xCl_{3-x}: PCBSD (2 h annealing) based PSCs.

Table S1. Cell parameters of CH₃NH₃PbI_xCl_{3-x}: PCBSD (2 h annealing) based PSCs.

Figure S3. Performance of CH₃NH₃PbI_xCl_{3-x}: PCBSD (3 h annealing) based PSCs

Table S2. Cell parameters of CH₃NH₃PbI_xCl_{3-x}: PCBSD (3 h annealing) based PSCs.

Figure S4. Thin film absorption spectra of pristine PCBSD and C-PCBSD thin films heating in 100 °C with different annealing time and then were washed by chlorobenzene.

Figure S5. SEM cross-sections images, the EDAX spectra of perovskite film and the statistical results in perovskite and perovskite: C-PCBSD (6 mg/ml) samples.

Table S3. Cell parameters of different active layer based perovskite solar cells scanned in forward and reverse directions.

Figure S6. Azimuthally integrated intensity plots along the direction of outside surface (azimuth Angle of 90 degrees in the 2D GIXRD).

Figure S7. Annealing time dependent XRD patterns of CH₃NH₃PbI_xCl_{3-x}, CH₃NH₃PbI_xCl₃₋, x:PCBM and CH₃NH₃PbI_xCl_{3-x}:C-PCBSD films.

Table S4. Electrical impedance spectroscopy (EIS) parameters of $CH_3NH_3PbI_xCl_{3-x}$ and $CH_3NH_3PbI_xCl_{3-x}$: C-PCBSD based PSCs.

Figure S8. Absorption spectra of fresh and aged (after 180 h) CH₃NH₃PbI_xCl_{3-x} and CH₃NH₃PbI_xCl_{3-x}: C-PCBSD films.

Figure S9. SEM images of aged morphological evaluations of CH₃NH₃PbI_{*x*}Cl_{3-*x*} and CH₃NH₃PbI_{*x*}Cl_{3-*x*}: C-PCBSD films.

Preparation of CH₃NH₃PbI_xCl_{3-x}: PCBSD Precursor Solution

Figure S1. Molecular structures of $CH_3NH_3PbI_xCl_{3,x}$ and PCBSD, and photographies of preparted $CH_3NH_3PbI_xCl_{3,x}$: PCBSD precursor solutions with varied mass of PCBSD.

CH₃NH₃I was synthesized and purified by following previously reported process.^[1-3] Pristine perovskite precursor solution was prepared by mixing PbCl₂ and CH₃NH₃I powder with a molar ration of 3:1 in DMF solvent (30 wt %). The perovskite precursor solution containing C-PCBSD was prepared as follows: CH₃NH₃I (256 mg), C-PCBSD (varied mass) and 149 mg PbCl₂ were dissolved in 1 ml DMF mixed solvent with stirring overnight at 60 °C. The mixture was kept stirred at 60 °C for 8h and filtered through 0.45 µm filter before usage. And then precursor solution of perovskite was spin coated onto the PEDOT:PSS layer at 4000 rpm/40s.

- [1] X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang, L. S. Liao, Adv. Funct. Mater. 2015, 25, 6671.
- [2] Z. K. Wang, X. Gong, M. Li, Y. Hu, J. M. Wang, H. Ma, and L. S. Liao, ACS Nano 2016, 10, 5479.
- [3] Z. K. Wang, M. Li, Y. G. Yang, Y. Hu, H. Ma, X. Y. Gao, and L. S. Liao, Adv. Mater. 2016, DOI: 10.1002/adma.201600626

Performance of CH₃NH₃PbI_xCl_{3-x}: PCBSD (2 h annealing) Based PSCs

Figure S2. *J-V* curves of $CH_3NH_3PbI_xCl_{3-x}$: PCBSD (2 h annealing) based perovskite solar cells measured under simulated AM 1.5 sunlight of 100 mW/cm² irradiation.

Table S1. C	Cell parameters of	$CH_3NH_3PbI_xCl_{3-x}$: P	CBSD (2 h annealing)	based perovskite solar cells.
-------------	--------------------	-----------------------------	----------------------	-------------------------------

Active Layer	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)	PCE _{AVE} (%)	R _s (Ω)
CH ₃ NH ₃ PbI _x Cl _{3-x}	0.92	18.73	70	12.06	11.83±0.25	57.6
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (1 mg/ml)	0.93	19.57	74	13.46	13.32±0.17	52.3
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (3 mg/ml)	0.93	20.32	75	14.09	13.75±0.36	33.4
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (6 mg/ml)	0.93	21.64	75	15.09	14.86±0.42	20.1
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (9 mg/ml)	0.92	22.27	72	14.63	14.48±0.22	25.8
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (12 mg/ml)	0.93	22.50	67	14.04	13.83±0.62	18.3

Performance of CH₃NH₃PbI_xCl_{3-x}: PCBSD (3 h annealing) Based PSCs

Figure S3. *J-V* curves of $CH_3NH_3PbI_xCl_{3-x}$: PCBSD (3 h annealing) based perovskite solar cells measured under simulated AM 1.5 sunlight of 100 mW/cm² irradiation.

Table S2. Cell parameters of CH₃NH₃PbI_xCl_{3-x}: PCBSD (3 h annealing) based perovskite solar cells.

Active Layer	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)	PCE _{AVE} (%)	R _s (Ω)
CH ₃ NH ₃ PbI _x Cl _{3-x}	0.93	18.83	71	12.43	11.83±0.25	51.3
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (1 mg/ml)	0.96	19.35	70	13.01	12.76±0.27	38.9
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (3 mg/ml)	0.96	21.40	73	15.00	14.84±0.23	29.2
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (6 mg/ml)	0.96	21.71	75	15.63	15.57±0.17	33.0
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (9 mg/ml)	0.95	22.50	66	14.11	14.09±0.14	37.6

Figure S4. Thin film absorption spectra of pristine PCBSD and C-PCBSD thin films heating in 100 °C with different annealing time and then were washed by chlorobenzene.

Figure S5. The EDAX spectra of perovskite film; SEM cross-sections image and top view in CH₃NH₃PbI_xCl_{3-x} (a, e) and CH₃NH₃PbI_xCl_{3-x}: C-PCBSD (6 mg/ml) (b, f) samples, (c, e) I, Pb, In, Si, N mapping of CH₃NH₃PbI_xCl_{3-x}, (d, f) I, Pb, In, Si, N mapping of CH₃NH₃PbI_xCl_{3-x}: C-PCBSD (6 mg/ml).

Device	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
CH ₃ NH ₃ PbI _x Cl _{3-x} (forward)	0.95	18.67	71	12.59
CH ₃ NH ₃ PbI _x Cl _{3-x} (reverse)	0.95	19.58	57	10.06
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBM (forward)	0.95	22.05	73	15.29
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBM (reverse)	0.94	21.97	71	14.66
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (forward)	0.98	22.08	79	17.09
CH ₃ NH ₃ PbI _x Cl _{3-x} :PCBSD (reverse)	0.98	22.65	77	17.09

Table S3. Cell parameters of $CH_3NH_3PbI_xCl_{3-x}$, $CH_3NH_3PbI_xCl_{3-x}$: PCBM and $CH_3NH_3PbI_xCl_{3-x}$: PCBSD based perovskite solar cells scanned in forward and reverse directions.

Table S4. Electrical impedance spectroscopy (EIS) parameters of CH₃NH₃PbI_xCl_{3-x} and CH₃NH₃PbI_xCl_{3-x}: C-PCBSD (6 mg/ml) based PSCs.

	CH ₃ NH ₃ PbI _x Cl _{3-x}	CH ₃ NH ₃ PbI _x Cl _{3-x} :C-PCBSD
$R_{s}\left(\Omega ight)$	59.6	27.3
$R_{CT}(\Omega)$	1269	891
$C(\mathbf{F})$	2.1×10 ⁻⁶	2.4×10 ⁻⁶

Figure S6. Azimuthally integrated intensity plots along the direction of outside surface (azimuth Angle of 90 degrees in the 2D GIXRD) of the corresponding GIXRD patterns of the two films in Figure 4 (d) and (e).

Figure S7. XRD patterns of (a) $CH_3NH_3PbI_xCl_{3-x}$ (Thickness: 282 nm), (b) $CH_3NH_3PbI_xCl_{3-x}$:PCBM (6 mg/ml) (Thickness: 295 nm) and (c) $CH_3NH_3PbI_xCl_{3-x}$: PCBSD (6 mg/ml) (Thickness: 305 nm) films with varied annealing time of 2 h, 3 h, and 6 h at 100°C.

Figure S8. Absorption spectra of fresh and aged (after 180 h) $CH_3NH_3PbI_xCl_{3-x}$ (280 nm) and $CH_3NH_3PbI_xCl_{3-x}$: C-PCBSD (6 mg/ml) (280 nm) films.

Figure S9. SEM images of (a) $CH_3NH_3PbI_xCl_{3-x}$ (aging time: 0h), (b) $CH_3NH_3PbI_xCl_{3-x}$ (aging time: 20h), (c) $CH_3NH_3PbI_xCl_{3-x}$ (aging time: 40h), (d) $CH_3NH_3PbI_xCl_{3-x}$: C-PCBSD (aging time: 0h), (e) $CH_3NH_3PbI_xCl_{3-x}$: C-PCBSD (6 mg/ml) (aging time: 20h) and (f) $CH_3NH_3PbI_xCl_{3-x}$: C-PCBSD (aging time: 40h).