Electronic supplementary information

High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of CO₂/N₂/CH₄ mixture

Zhiwei Qiao¹, Chunwang Peng², Jian Zhou² and Jianwen Jiang^{1*}

¹Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore ²School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China

Table of Contents

1. Molecular models					
2. Pore limiting diameters					
3. Diffusion of CO ₂ , N ₂ and CH ₄ at infinite dilution in a MOF with PLD = 3.2 Å	S4				
4. Percentage of pore size distribution between d_1 and d_2	S5				
5. Diffusivity and diffusion selectivity versus density, porosity and VSA	S6				
6. Permeation and permselectivity versus density, porosity and VSA	S8				
7. 24 Prescreened MOFs	S10				
8. $CO_2/N_2/CH_4$ mixture in a MOF with PLD = 3.2 Å	S14				

1. Molecular models

Atoms	С	0	Н	Ν	F	Cl	Br	Zn	Cu	Zr	V
$\sigma(\text{\AA})$	3.43	3.12	2.57	3.26	2.997	3.517	3.73	2.46	3.114	2.783	2.80
$\mathcal{E}/k_{\rm B}({\rm K})$	52.83	30.19	22.14	34.72	25.16	114.23	126.3	62.40	2.516	34.72	8.05

Table S1 Lennard Jones parameters of MOFs.

From A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, **114**, 10024-10035.

Fig. S1 Lennard-Jones parameters and charges of CO₂, N₂ and CH₄.

From J. J. Potoff, J. I. Siepmann, Vapor–Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide and Nitrogen. *AIChE J.* 2001, **47**, 1676-1682.

2. Pore limiting diameters

Fig. S2 PLDs of 137953 MOFs. There are 17257 MOFs with PLD between $3 \sim 4$ Å.

3. Diffusion of CO₂, N₂ and CH₄ at infinite dilution in a MOF with PLD = 3.2 Å

Fig. S3 Pore diameter and morphology along z-axis in a MOF (ID: 31136) with PLD of 3.2 Å.

MOF_31136+CO2.mp4, MOF_31136+N2.mp4 and MOF_31136+CH4.mp4 visualize the diffusion of CO_2 , N_2 and CH_4 in a MOF (ID: 31136) at infinite dilution. In each video, the number of gas molecules is 30; however, there is no gas-gas intermolecular interaction, thus corresponding to infinite dilution.

4. Percentage of pore size distribution between d_1 and d_2

As illustrated in Fig. S4, the percentage of pore size distribution (PSD) between d_1 and d_2 is defined as $PSD\%_{(d_1 \sim d_2)} = A_{12}/A_{\text{total}} \times 100\%$

where A_{12} is the area for pore size between d_1 and d_2 , and A_{total} is the total area under the entire PSD curve.

Fig. S4 Pore size distribution between d_1 and d_2 .

5. Diffusivity and diffusion selectivity versus density, porosity and VSA

Fig. S5.1 Diffusivity versus density.

Fig. S5.2 Diffusivity versus porosity.

Fig. S5.3 Diffusivity versus VSA.

Fig. S6.1 Diffusion selectivity versus density for CO_2/CH_4 and N_2/CH_4 .

Fig. S6.2 Diffusion selectivity versus porosity for CO₂/CH₄ and N₂/CH₄.

Fig. S6.3 Diffusion selectivity versus VSA for CO₂/CH₄ and N₂/CH₄.

6. Permeation and permselectivity versus density, porosity and VSA

Fig. S7.1 Permeability versus density.

Fig. S7.2 Permeability versus porosity.

Fig. S7.3 Permeability versus VSA.

Fig. S8.1 Permselectivity versus density for CO_2/CH_4 and N_2/CH_4 .

Fig. S8.2 Permselectivity versus porosity for CO_2/CH_4 and N_2/CH_4 .

Fig. S8.3 Permselectivity versus VSA for CO₂/CH₄ and N₂/CH₄.

7. 24 Prescreened MOFs

Fig. S9 Prescreened MOFs (red circles) for both CO_2/CH_4 and N_2/CH_4 separation.

No. 4 (ID: 10480)

No. 8 (ID: 10520)

No. 12 (ID: 11680)

No. 19 (ID: 31797)

No. 20 (ID: 5039457)

Fig. S10 Atomistic structures of 24 prescreened MOFs.

8. $CO_2/N_2/CH_4$ mixture in a MOF with PLD = 3.2 Å

Fig. S11 Simulation snapshot for $CO_2/N_2/CH_4$ mixture in a MOF (ID: 31136) CO_2 : green-yellow-green balls, N_2 : blue dumbbells, CH_4 : red balls.