Electronic Supplementary Information

Enhancement of thermoelectric properties of Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb₁₂ p-type skutterudite by tellurium addition

Liangwei Fu[†], and Qinghui Jiang[†], Junyou Yang^{*}, Jiangying Peng, Ye Xiao, Yubo Luo, Zhiwei Zhou, Dan Zhang

[†] These authors contributed equally to this work

* Corresponding author. E-mail address: jyyang@mail.hust.edu.cn (J. Y. Yang)

1. EDS mapping analysis of $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12}$ and $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{11.9}Te_{0.1}$ sample

Figure S1 the microstructure and element distribution of the $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12}$ (a-b) and $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{11.9}Te_{0.1}$ (c-e) sample: (a, c) fractured surface images, and corresponding X-ray maps for Ni (b, d) and Te (e) by energy dispersive spectroscopy (EDS).

2. Rietveld refinements results

Figure S2 Rietveld refinements for $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12-x}Te_x$ samples. (a) x=0.00, (b) x=0.02, (c) x=0.04, (d) x=0.10

3. Calculation of effective mass and Lorentz number

The effective mass m* is estimated by the following equation [1]:

$$n = \frac{4}{\sqrt{\pi}} \left(\frac{2\pi m^* k_B T}{h^2} \right)^{\frac{3}{2}} F_{r+1}(\varphi)$$

 $F_n(\varphi) = \int_0^\infty \frac{x^n}{e^{(x-\varphi)} + 1} dx$ Here, $F_n(\varphi)$ is the Fermi integration:

r=-1/2 for acoustic phonon scattering near room temperature) and is the reduced Fermi energy $\varphi = E_f/k_BT$ and which can be derived from the measured S on the basis of single parabolic band

$$S = \pm \frac{k_B}{e} \left(\frac{\frac{(r+5/2)F}{r+\frac{3}{2}}}{\frac{(r+3/2)F}{r+\frac{1}{2}}} - \varphi \right)$$

approximation:

In addition, the Lorenz number (L_0) is estimated by the following equation:

$$L_{0} = \left(\frac{k_{B}}{e}\right)^{2} \left(\frac{\left(r + \frac{7}{2}\right)F_{r+5/2}(\varphi)}{\left(r + \frac{3}{2}\right)F_{r+1/2}(\varphi)} - \left(\frac{\left(r + \frac{7}{2}\right)F_{r+3/2}(\varphi)}{\left(r + \frac{3}{2}\right)F_{r+1/2}(\varphi)}\right)^{2}\right)$$

The calculated Lorentz numbers of all the studied samples in this paper are shown in Figure S3.

Figure S3 the calculated Lorentz number of all the $CeFe_4Sb_{12}$ and $Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12\text{-}x}Te_x$ samples in this paper.

4. The temperature dependence of electronic thermal conductivity (κ_e) of

Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12-x}Te_x samples

According to the Wiedemann-Franz law ($\kappa_e = L_0 T/\rho$), the κ_e for all the samples in the whole measured temperature range is calculated based on the estimated Lorentz number L_0 .

 $\label{eq:conductivity} Figure \ S4 \ temperature \ dependence \ of \ electrical \ thermal \ conductivity \ of \ the \ CeFe_4Sb_{12} \ and \ Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12-x}Te_x \ samples.$

5. Calculation of $\kappa_{\rm L}$ and $\kappa_{\rm bp}$

Above 673K, large amount of the electrons from the valence of p-type skutterudites are thermally activated to conduction band, which leads to the deleterious bipolar effect. The total thermal conductivity of p-type skutterudite in the range of intrinsic conduction is modified as this equation : $\kappa_{\text{total}} = \kappa_{\text{L}} + \kappa_{\text{e}} + \kappa_{\text{bp}}$, in which κ_{total} , κ_{L} , κ_{e} and κ_{bp} represent the total thermal conductivity, lattice thermal conductivity, electronic conductivity and bipolar thermal conductivity respectively. As suggested by Slack [2], the lattice thermal conductivity should follow the relationship $\kappa_{\text{L}} \propto T^{-1}$. At low temperature (below 673K) the bipolar effect is not obvious, the $\kappa_{\text{total}} - \kappa_{\text{e}}$ follows that linear relationship quite well but it begins to deviate at temperature above 673K, as shown in Figure S5. The κ_{L} at high temperature is estimated by extrapolating the linear relationship of $\kappa_{\text{L}} \propto T^{-1}$ as shown by dashed line in Figure S5. So the κ_{bp} can be calculated by $\kappa_{\text{total}} - \kappa_{\text{c}}$, as also shown in Figure S5.

Figure S5 the total thermal conductivity minus electronic thermal conductivity as a function of temperature for the CeFe₄Sb₁₂ and Ce_{0.9}Fe_{3.75}Ni_{0.25}Sb_{12-x}Te_x samples.

Reference

- [1] R. H. Liu, P. F. Qiu, X. H. Chen, X. Y. Huang, L. D. Chen, Journal of Materials Research, 2011, 26, 1813-1820
- [2]G. A. Slack, Solid State Physics, 1979, 34, 1-71