Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Efficient and Selective Heavy Metal Sequestration from Water by Layered Sulfide K_{2x}Sn₄₋

xS{8-x} (x=0.65-1; KTS-3)

Debajit Sarma[†], Saiful M. Islam[†], K. S. Subrahmanyam[†] and Mercouri G. Kanatzidis^{*,†,‡}

[†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

[‡]Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

E-mail: m-kanatzidis@northwestern.edu

Figure S1. SEM micrograph and EDS data of (a) KTS-3 and the ion-exchanged samples (b) Cd-KTS-3, (c) Hg-KTS-3, (d) Pb-KTS-3, (e) Ag-KTS-3, and (f) As-KTS-3, respectively.

Figure S2. EDS elemental dot map of Hg-KTS-3.

Figure S3. EDS elemental dot map of Pb-KTS-3.

Figure S4. EDS elemental dot map of Ag-KTS-3.

Figure S5. EDS elemental dot map of As-KTS-3.

Figure S6. Powder X-ray diffraction patterns of pristine KTS-3 and the heavy metal ion-exchanged materials. The (020) and (040) reflection peaks for the exchanged materials shift towards higher 20 (lower d spacing) indicates contraction of the interlayer distance.

Figure S7. The TG analysis of the ion-exchanged materials.

Figure S8. X-ray photoelectron spectra of (a) cadmium, (b) mercury, (c) lead and (d) potassium spectrum for the ion-exchanged materials. Dotted and solid lines represent experimental and deconvoluted spectra, respectively. Please note that no peak was observed for potassium for the heavy metal ion-exchanged materials, confirmation of complete potassium ion-exchange.

Figure S9. Equilibrium data for Hg²⁺ and Pb²⁺ ion-exchange, the solid data represents the fitted lines by Langmuir and Langmuir-Freundlich isotherm model.

Figure S10. Plot shows the data for tin leaching (weight %) for the heavy metal ion exchange experiments of various concentrations (~5-500 ppm).

Figure S11. The plot of t/q_t vs t for the kinetics data of heavy metal ion absorption by KTS-3, which is fitted satisfactorily with the pseudo-second order kinetic model.

	Cd ⁺ ion exchange		Hg ²⁺ ion exchange		Pb ²⁺ ion exchange	
	Langmuir	Langmuir- Freundlich	Langmuir	Langmuir- Freundlich	Langmuir	Langmuir- Freundlich
$q_{\rm e}({\rm mg/g})$	209 (13)	204(17)	408 (25)	377 (14)	280 (19)	391(88)
<i>b</i> (L/mg)	0.28 (9)	0.32(14)	0.09(3)	0.14 (1)	0.11 (6)	0.04(6)
n	-	0.9 (4)	-	0.32 (9)	-	2.9 (7)
<i>R</i> ²	0.890	0.877	0.894	0.945	0.825	0.964

Table ST1. The ion exchange sorption constants obtained by fitting the isotherm data with different models.

Cd ²⁺			Hg ²⁺			Pb ²⁺		
		Sn			Sn			Sn
Initial	Final	leaching	Initial	Final	leaching	Initial	Final	leaching
(ppm)	(ppm)	(wt %)	(ppm)	(ppm)	(wt %)	(ppm)	(ppm)	(wt %)
412.324	207.447	0.005	482.946	114.236	0.021	480.644	53.719	0.064
366.51	161.785	0.005	386.357	104.497	0.019	432.58	30.052	0.005
320.696	122.938	0.005	338.062	31.88	0.006	384.515	7.738	0.005
274.882	0.03	0.005	241.473	7.814	0.014	288.386	5.994	1.202
229.069	46.354	1.176	144.883	3.241	0.599	96.128	2.052	0.21
45.813	5.287	1.278	48.294	1.241	0.229	48.064	1.842	0.725
22.906	2.143	1.444	24.147	1.639	0.303	24.032	1.213	2.162
11.4534	1.053	1.31	12.073	0.902	0.166	12.016	1.966	1.526
5.726	0.421	1.968	6.0368	0.543	0.1	6.008	0.023	1.414

Table ST2. Summary of tin leaching (weight %) for the heavy metal ion exchange experiments of various concentrations (~5-500 ppm) with KTS-3.

Table ST3.	Removal of As	s ³⁺ and Ag ⁺ from	n solution of	various strength (10-100 ppm,	V/m = 1	000,
pH=~7) wi	th KTS-3.						

As ³⁺ ion-exchange										
SL No.	KTS-3	Initial	Final	Removal	$K_d (\mathrm{mL/g})$	q (mg/g)				
	(mg)	Concentration	Concentration	(%)						
		(ppm)	(ppm)							
1	10	10	0.093	99.06	105899.3	9.9				
2	10	25	0.365	98.53	67447.5	24.63				
3	10	50	3.011	93.97	15605.75	46.98				
4	10	100	34.274	65.72	1917.62	65.72				
	Ag ⁺ ion-exchange									
ID	KTS-3	Initial	Final	Removal	$K_d (\mathrm{mL/g})$	q (mg/g)				
	(mg)	Concentration	Concentration	(%)						
		(ppm)	(ppm)							
5	10	10	< 0.005	>99.5	>199000	>9.95				
6	10	25	< 0.005	>99.8	>499000	>24.95				
7	10	50	< 0.005	>99.9	>999000	>49.95				
8	10	100	< 0.005	>99.95	>1999000	>99.95				