Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

A fascinating multitasking *Cu-MOF/rGO* hybrid for high performance supercapacitor and highly sensitive and selective electrochemical nitrite sensor

Mohit Saraf^a, Richa Rajak^b and Shaikh M. Mobin^{*a,b,c}

^aDiscipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol-453552, India
^bDiscipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol-453552, India
^cCentre for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Simrol-453552, India

*E-mail: xray@iiti.ac.in Tel: +91 731 2438 762

Optimization of relative amounts of Cu-MOF and rGO and mass loading on to the GCE

Fig. S1 (a, b) CV profiles of *Cu-MOF/rGO/GCE* prepared by acquiring 9 different relative amounts of Cu-MOF and rGO i.e. ((1) 90% Cu-MOF/10% rGO, (2) 80% Cu-MOF/20% rGO, (3) 70% Cu-MOF/30% rGO, (4) 60% Cu-MOF/40% rGO (5) 50% Cu-MOF/50% rGO (6) 40% Cu-MOF/60% rGO, (7) 30% Cu-MOF/70% rGO, (8) 20% Cu-MOF/80% rGO and (9) 10% Cu-MOF/90% rGO) for both supercapacitor and nitrite sensor in 1 M Na₂SO₄ and 0.1 M PBS, respectively and (c, d) CV profiles of *Cu-MOF/rGO/GCE* for different mass loadings for both supercapacitor and nitrite sensor in 1 M PBS, respectively.

Calculation of Supercapacitor Parameters

The discharge capacitance from chronopotentiometry was calculated by the following equation. 1

Discharge Capacitance =
$$\frac{l}{m} \times \frac{dt}{dv}$$

Where I the discharge current in ampere (A), m is the mass of the active material deposited on the GCE and dt/dv is the slope inverse of the discharge curve.¹

The maximum energy density values were calculated from the following equation:

Energy Density =
$$\frac{1}{2}$$
 × (Discharge Capacitance) × Vi²

Where V_i is the initial voltage of the discharge curve.¹

The power density was calculated using the following equation:

$$Power \ Density = \frac{Energy \ Density}{\Delta t}$$

Here Δt is the time of discharge.

Table S1. Crystal data and structure refinement for Cu-MOF.

empirical formula	C ₆ H ₂ Cu O ₅		
formula weight	217.62		
crystal system	Cubic		
space group	Fm-3m		
a (Å)	26.3504(6)		
b (Å)	26.3504(6)		
c (Å)	26.3504(6)		
a (deg)	90		
β (deg)	90		
γ (deg)	90		
V (Å ³)	18296.2(12)		
Z	48		
temperature (K)	293(2)		
θ range	3.092 to 24.972		
goodness-of-fit	1.190		
R1	0.0324		
wR2	0.0923		
F(000)	5136		
CCDC	1496503		

Fig. S2 Histogram of Cu-MOF crystals size distribution in Cu-MOF/rGO hybrid.

Fig. S3 (a) PXRD pattern of rGO, (b) SEM image of rGO and (c) TEM image of rGO.

Fig. S3a shows the x-ray diffraction pattern of bare rGO. The peaks emerged at $2\theta = ~25^{\circ}$ and ~43° correspond to (002) and (100) planes respectively and verifies the formation of rGO phase.² The FESEM image of rGO as shown in Fig. S3b, exhibits wrinkled crinkly type structure. Enhanced electrochemical performance can be expected from this type of morphology because it can possibly prevents restacking among rGO sheets and the presence of wrinkles upon these structures markedly improves the ion transportation on electrode surface due to shortening the ion diffusion path.^{3,4} TEM image further reveals the formation of thin rGO sheets and suggesting the crinkly wrinkled structures (Fig. S3c).

Fig. S4 CV profiles of (a) *Cu-MOF/GCE*, (b) *rGO/GCE* and (c) *Cu-MOF/rGO/GCE* at a scan rate of 75 mV s⁻¹.

Fig. S5 (a, b) CV profiles of *Cu-MOF/rGO/GCE* at higher range of injected concentration of nitrite, where inset shows the calibration plot between current and concentration.

Sample	Nitrite concentration in the unspiked sample (mM)	Known spike added concentration (mM)	Analyte concentration in the spiked sample (mM)	Recovery (%)
	0	0.5	0.575	115
Pond Water	0	1	1.20	120
	0	1.5	1.785	119
	0	2	2.4	120
	0	2.5	2.96	118.4
	0	3	3.5	116.69
	0	3.5	4.059	116

Table S2. Determination results of nitrite in real sample.

References

- 1 R. A. Dar, G. A. Naikoo, P. K. Kalambate, L. Giri, F. Khan, S. P. Karna and A. K. Srivastava, *Electrochim. Acta*, 2015, **163**, 196–203.
- 2 M. Saraf, R. A. Dar, K. Natarajan, A. K. Srivastava and S. M. Mobin, *ChemistrySelect*, 2016, 1, 2826-2833.
- 3 C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett., 2010, 10, 4863-4868.
- 4 Y. Bai, R. B. Rakhi, W. Chen and H. N. Alshareef, J. Power Sources, 2013, 233, 313-319.