Multishell structured magnetic nanocomposites carrying copolymer of pyrrole-

thiophene for highly selective Au(III) recovery

Mingying Zhu,^a Wei Zhang,^b Yan Li,^a Ligang Gai,^{a*} Jianhua Zhou,^a and Wanyong Ma^a

^aInstitute of Advanced Energy Materials and Chemistry, School of Chemistry and Pharmaceutical

Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China

^bDongying Entry-Exit Inspection and Quarantine Bureau, Dongying 257000, People's Republic of

China

*Corresponding author: E-mail: liganggai@qlu.edu.cn

Table of Contents

- S1. Synthesis of Fe₃O₄/SiO₂, Fe₃O₄/SiO₂/PPy, and Fe₃O₄/SiO₂/PTh nanocomposites
- S2. Characterization of core-shell structured Fe₃O₄/SiO₂
- S3. Theoretical calculations
- S4. XPS data
- S5. CHNS analysis
- S6. FT-IR analysis
- S7. Cyclic voltammograms (CVs)
- S8. Determination of weight percentage of the nonmagnetic components
- S9. Magnetic response of Fe₃O₄/SiO₂/cPPyTh from Au(III) solution through a hand-held magnet

S10. BET analysis

S11. Adsorption properties of the samples

S12. Calculation results of S_{Au} versus interfering ions

S13. Evidence for the formation of Au⁰ upon the adsorbents

S1. Synthesis of Fe₃O₄/SiO₂, Fe₃O₄/SiO₂/PPy, and Fe₃O₄/SiO₂/PTh nanocomposites

Before synthesis of Fe₃O₄/SiO₂ nanocomposite, Fe₃O₄ ferrofluid was first prepared through a chemical co-precipitation method.¹ Briefly, 8.94 mmol FeCl₃·6H₂O, 5 mmol FeSO₄·7H₂O, and 120 mL of distilled water were added into a three-neck flask with capacity of 250 mL. The mixture was bubbled with N₂, accompanying with agitation to form a clear solution. The reaction temperature was raised to 50 °C, followed by dropwise addition of 4 mL of concentrated NH₃·H₂O (28 wt.%). Then, the mixture was heated at 85 °C for 1 h with constant stirring and N₂ bubbling, and allowed to cool to room temperature. After that, 2.5 mL of tetraethoxysilane were added into the mixture. The mixture was vigorously agitated at room temperature for 3 h. The precipitate was collected by applying a hand-held permanent magnet, washed with distilled water and ethanol several times, and finally dried in a vacuum oven.

For the synthesis of $Fe_3O_4/SiO_2/PPy$, 0.6 g of Fe_3O_4/SiO_2 powders, 50 mL of 0.05 mol L⁻¹ hydrochloric acid (HCl) solution, and 10 mg of sodium dodecyl sulfate were added into a three-mouth flask with capacity of 250 mL. The mixture was treated with ultrasound for 5 min, and

agitated at room temperature for 0.5 h. Then, the temperature of the mixture was decreased to 5 °C in an ice-bath. Subsequently, 0.9 mL of redistilled pyrrole was added into the mixture, followed by agitation for 1 h. After that, 20 mL of 0.97 mol L⁻¹ FeCl₃ aqueous solution was slowly added into the above mixture. The polymerization reaction was kept at 5 °C for 3 h with constant stirring and intermittent ultrasonication. The precipitate was separated by a hand-held magnet, washed with distilled water and ethanol several times, and collected by filtration. Finally, the resulting product was dried in a vacuum oven.

As for Fe₃O₄/SiO₂/PTh, 0.6 g of Fe₃O₄/SiO₂ powders, 60 mL of chloroform, and 10 mg of sodium dodecyl sulfate were added into a three-mouth flask with capacity of 250 mL, followed by ultrasonic treatment at room temperature for 10 min. Then, 1 mL of thiophene was added into the mixture. The mixture was vigorously stirred at room temperature for 1 h, followed by addition of 2.53 g of anhydrous FeCl₃. After vigorous agitation with intermittent ultrasonic treatment for 3.5 h, the mixture was separated with a hand-held magnet. The precipitate was washed with ethanol several times, collected by filtration, and finally dried in a vacuum oven.

S2. Characterization of core-shell structured Fe₃O₄/SiO₂

Fig. S1 Characterization of Fe₃O₄/SiO₂: (a) XRD spectra; (b) FT-IR spectrum; (c,d) TEM image.

Fig. S1a shows the XRD pattern of Fe₃O₄/SiO₂. In view of the amorphous nature of silica coating, the diffraction peaks can be indexed to the (111), (220), (311), (400), (422), (511), and (440) planes of face-centered cubic Fe₃O₄ (JCPDS 89-2355). This result indicates that the magnetite phase is retained after silica coating. Using the data of (311), (511), and (440) planes, the mean size of Fe₃O₄ crystallites in Fe₃O₄/SiO₂ is estimated to be 25.2 nm, according to the Scherrer equation.

The silica shell of the magnetic composite can be confirmed by the FT-IR spectrum (Fig. S1b). The broad peak centered at 3200 cm⁻¹ are due to the stretching vibrations of O–H arising from silanols and surface adsorbed water. The strong and broad peak at 1097 cm⁻¹ and the small peak centered at 802 cm⁻¹ are attributed to the asymmetric and symmetric stretching vibrations of Si–O–Si in SiO₂.²⁻⁵ The peaks centered at 967 and 474 cm⁻¹ correspond separately to the bending vibrations of SiO–H and SiO–Si.⁵ The peak centered at 575 cm⁻¹ is attributed to the stretching vibration of Fe–O bond in Fe₃O₄.^{2,3}

The morphology of Fe₃O₄/SiO₂ is reflected by the TEM images. Although the composite nanoparticles are aggregated due to magnetic dipolar interactions (Fig. S1c), the core–shell structure of the composite can be clearly discerned from the high-magnification TEM image (Fig. S1d). Because silica is amorphous with light contrast while magnetite is crystalline with dark contrast (Fig. S1a), the core–shell structured composite is in the form of silica-coated magnetite. In some cases, multiscaled silica shell occurs in the composite (the region indicated by an arrow in Fig. S1d), rendering shell thickness in the range of 5–18 nm. To estimate the weight percentage of silica in Fe₃O₄/SiO₂, sample powders were dissolved in a plastic bottle with hydrofluoric acid to form a clear solution. The solution was sampled and measured by the ICP–OES technique, giving a value of 33.8% for the weight percentage of silica in Fe₃O₄/SiO₂.

On the basis of sample characterizations, we conclude that: (1) the magnetite phase is retained after silica coating; (2) the magnetic silica exhibits a core–shell structure in the form of silica-coated

magnetite with shell thickness of 5–18 nm; (3) the weight percentage of silica in the magnetic composite is estimated to be 33.8% through the ICP–OES technique.

S3. Theoretical calculations

	orbi	tal energy (eV)	energy	y (a.u.)	Difference in energy
molecular formula	НОМО	LUMO	ΔE	molecule	cation radical	kJ mol ⁻¹
C ₄ H ₄ S	-6.33459	-0.20735	6.12724	-553.0026285	-552.6902656	820.1
C_4H_5N	-5.48395	1.38589	6.86984	-210.1658907	-209.879343	752.3
SS	-5.47497	-1.24738	4.22759	-1104.8165369	-1104.5556149	685.1
SN	-5.03197	-0.6743	4.35767	-761.9822168	-761.7352016	648.5
NN	-4.65046	0.24763	4.89809	-419.1479562	-418.9137743	614.8
N_3	-4.30624	-0.16681	4.13943	-628.130651	-627.9197031	553.8
N_4	-4.24392	-0.29742	3.9465	-837.115121	-836.9156897	523.6
N_5	-4.14378	-0.4343	3.70949	-1046.0983794	-1045.9070233	502.4
N_6	-4.08854	-0.51158	3.57696	-1255.0814111	-1254.8958841	487.1
N_7	-4.048	-0.57525	3.47274	-1464.0646582	-1463.883274	476.2
N_8	-4.01344	-0.62995	3.38349	-1673.0482929	-1672.8697271	468.8
N_9	-3.99738	-0.66015	3.33723	-1882.0316191	-1881.8555422	462.3
N ₁₀	-3.9797	-0.68546	3.29424	-2091.0145674	-2090.8407164	456.4
SSS	-5.13701	-1.68848	3.44853	-1656.6316049	-1656.3934095	625.4
SNS	-4.81945	-1.18887	3.63057	-1313.7992866	-1313.5705795	600.5
NSS	-4.84421	-1.36793	3.47628	-1313.7973767	-1313.5688162	600.1
NNS	-4.55141	-0.82125	3.73017	-970.9652595	-970.7456633	576.5
NSN	-4.59087	-0.94207	3.6488	-970.9625648	-970.7430634	576.3
SSSS	-5.00884	-1.87678	3.13206	-2208.4469625	-2208.2217468	591.3
SNSS	-4.79686	-1.5195	3.27737	-1865.6152348	-1865.396609	574.0
NSSS	-4.80883	-1.66753	3.14131	-1865.6130436	-1865.3949725	572.5
SNNS	-4.59141	-1.05717	3.53424	-1522.7836657	-1522.5714148	557.3
NSNS	-4.62243	-1.21935	3.40308	-1522.7808483	-1522.5689453	556.4
NNSS	-4.59223	-1.35487	3.23736	-1522.7814687	-1522.5698509	555.6
NSSN	-4.64175	-1.39868	3.24308	-1522.7789774	-1522.5675192	555.2
NNNS	-4.40828	-0.82642	3.58186	-1179.9494621	-1179.7438243	539.9
NNSN	-4.44121	-0.96764	3.47356	-1179.9469435	-1179.7415798	539.2

 Table S1 Theoretical calculation results related to pyrrole, thiophene, and their oligomers.

*N and S denote pyrrole ring and thiophene ring in the oligomers, respectively.

NNS

NSN

NSS

SNS

SSS

NNNS

NNSN

NNSS

Fig. S2 Optimized structures of the oligomers; N and S denote pyrrole ring and thiophene ring in the oligomers, respectively.

Fig. S2 shows the optimized structures of the oligomers containing N and S with monomer number more than 2. It is found that the trimers have planar configurations while the tetramers have configurations in a relatively curved form. Also, the bending of the oligomer configurations increases as the number of N increases. This can be reflected by the configurations of SSSS, SNSS, NSSS, SNNS, NSSN, NSSN, NNSS, NNSN, and NNNS, especially for the configurations with N lying in the middle of oligomer chain such as SNNS and NNNS. This result indicates that the introduction of N into copolymer is beneficial for enhancing the flexibility of polymer chain.

Fig. S3 (a) S 2p spectrum of the sample prepared with $(NH_4)_2S_2O_8$, pyrrole, and thiophene in aqueous medium; (b) survey spectrum of Fe₃O₄/SiO₂/cPPyTh; (c) Fe 2p of Fe₃O₄/SiO₂/cPPyTh; (d) survey spectrum of Fe₃O₄/SiO₂/PTh and Fe₃O₄/SiO₂/PTh@Au; (e) O 1s of Fe₃O₄/SiO₂/cPPyTh before (black and green lines) and after Au(III) adsorption (red and cyan lines).

Table S2 Results of XPS analysis.

sample	C 1s					N 1s				Au 4f	
	Component (eV)/concentration (%)			Component (eV)/concentration (%)				Component (eV)/concentration			
Fe ₃ O ₄ /SiO ₂ /cPPyTh	284.5/32.6	285.5/29.5	287.8/29.2	291.3/8.7	399.4/22.0	400.0/41.1	400.6/17.1	401.9/19.8	_	_	
Fe ₃ O ₄ /SiO ₂ /cPPyTh@Au	284.8/23.4	286.1/7.2	287.9/9.8	290.4/59.6	399.6/18.3	400.0/14.8	400.5/29.1	405.1/37.8	84.2/53.2	87.8/46.8	
Fe ₃ O ₄ /SiO ₂ /PPy	284.7/57.0	287.1/27.4	291.1/15.6		399.2/9.6	399.7/26.3	400.1/43.7	402.2/20.4	-	-	
Fe ₃ O ₄ /SiO ₂ /PPy@Au	284.7/55.3	287.2/33.3	291.4/11.4		399.4/28.6	399.9/44.1	400.4/19.1	402.5/8.2	83.7/54.1	87.4/45.9	
Fe ₃ O ₄ /SiO ₂ /PTh	284.7/68.2	285.9/13.9	288.2/17.9		_	_	_	_	_	_	
Fe ₃ O ₄ /SiO ₂ /PTh@Au	284.8/71.7	286.1/12.8	288.3/15.5		_	_	_	_	84.1/54.5	87.8/45.5	
assignment	C=C/C=N	C–S(Cl)	С–О	C=O	C=N	N–H	$C-N^+$	$C=N^+$	Au 4f _{7/2}	Au 4f _{5/2}	
sample		S	2p		O 1s						
	Com	ponent (eV)/	concentration	u (%)	Component (eV)/concentration (%)		
Fe ₃ O ₄ /SiO ₂ /cPPyTh	163.8/33.4	165.0/31.3	168.3/35.3		530.4/7.2	531.2/2.7	532.6/50.4	532.8/32.0	534.4/7.7		
Fe ₃ O ₄ /SiO ₂ /cPPyTh@Au	163.9/37.7	165.2/14.3	168.8/48.0		529.6/2.8	531.2/18.4	532.1/23.8	533.1/42.9	534.0/12.1		
Fe ₃ O ₄ /SiO ₂ /PTh	163.8/34.5	164.8/65.5	_								
Fe ₃ O ₄ /SiO ₂ /PTh@Au	163.9/33.0	164.9/67.0	-								
assignment	S 2p _{3/2}	S 2p _{1/2}	oxysulfide		Fe–O	C=O/S=O	О–Н	Si–O	COOH/H ₂ O		

S5. CHNS analysis

Table S3 Results of CHNS analysis.

sample	weight (mg)	weight percent of every element (wt%)				atomic ratio of N/S
		N	С	S	Н	
Fe ₃ O ₄ /SiO ₂ /cPPyTh (5:1)	2.2030	9.344	35.43	1.517	6.044	14.1
Fe ₃ O ₄ /SiO ₂ /cPPyTh (3:1)	2.6180	8.852	34.28	1.677	5.399	12.1
Fe ₃ O ₄ /SiO ₂ /cPPyTh (1:1)	2.6480	4.232	22.81	5.111	3.306	1.9
Fe ₃ O ₄ /SiO ₂ /cPPyTh (1:5)	3.5840	3.028	23.72	8.740	3.413	0.8

S6. FT-IR analysis

Table S4 Results of FT-IR analysis.

peak position (cm ⁻¹)										
	1555, 1464	1190	926, 792, 668	1097, 478, 967	1317		575			
	ring breathing	С–ОН	С–Н	Si-O-Si/H	C–N		Fe–O			
1701	(1555, 1464)/1514	1190	926, 798	1097, 468, 967	709	618	576			
С=О	ring/p-doped ring breathing	С–ОН	С–Н	Si–O–Si/H	C–Cl	C–S	Fe–O			
1701	1564, 1479	1206, 1119	932, 796, 668	1097, 478, 967		618	575			
С=О	ring breathing	С–ОН	С–Н	Si-O-Si/H		C–S	Fe–O			
	1,5,6		1,5	3-5	7	5	3			
	1701 C=O 1701 C=O	1555, 1464 ring breathing 1701 (1555, 1464)/1514 C=O ring/p-doped ring breathing 1701 1564, 1479 C=O ring breathing 1,5,6	1555, 1464 1190 ring breathing C-OH 1701 (1555, 1464)/1514 1190 C=O ring/p-doped ring breathing C-OH 1701 1564, 1479 1206, 1119 C=O ring breathing C-OH 1701 1564, 1479 1206, 1119 C=O ring breathing C-OH 1,5,6 1,5,6 1464	peak position (cm ⁻¹) 1555, 1464 1190 926, 792, 668 ring breathing C-OH C-H 1701 (1555, 1464)/1514 1190 926, 798 C=O ring/p-doped ring breathing C-OH C-H 1701 1564, 1479 1206, 1119 932, 796, 668 C=O ring breathing C-OH C-H 1,5,6 1,5 1,5 1,5	peak position (cm ⁻¹) 1555, 1464 1190 926, 792, 668 1097, 478, 967 ring breathing C-OH C-H Si-O-Si/H 1701 (1555, 1464)/1514 1190 926, 798 1097, 468, 967 C=O ring/p-doped ring breathing C-OH C-H Si-O-Si/H 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 C=O ring breathing C-OH C-H Si-O-Si/H 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 C=O ring breathing C-OH C-H Si-O-Si/H 1,5,6 1,5 3-5	peak position (cm ⁻¹) 1555, 1464 1190 926, 792, 668 1097, 478, 967 1317 ring breathing C–OH C–H Si–O–Si/H C–N 1701 (1555, 1464)/1514 1190 926, 798 1097, 468, 967 709 C=O ring/p-doped ring breathing C–OH C–H Si–O–Si/H C–Cl 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 C=O C=O ring breathing C–OH C–H Si–O–Si/H C–Cl 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 1 C=O ring breathing C–OH C–H Si–O–Si/H 1 1,5,6 1,5 3-5 7 7	peak position (cm ⁻¹) 1555, 1464 1190 926, 792, 668 1097, 478, 967 1317 ring breathing C-OH C-H Si-O-Si/H C-N 1701 (1555, 1464)/1514 1190 926, 798 1097, 468, 967 709 618 C=O ring/p-doped ring breathing C-OH C-H Si-O-Si/H C-Cl C-S 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 618 C=O ring breathing C-OH C-H Si-O-Si/H C-Cl C-S 1701 1564, 1479 1206, 1119 932, 796, 668 1097, 478, 967 618 C=O ring breathing C-OH C-H Si-O-Si/H C-S 1,5,6 1,5 3-5 7 5			

S7. Cyclic voltammograms (CVs)

Fig. S4 CVs of cPPyTh (black line), PPy (blue line), and PTh (red line) at a scan rate of 10 mV s⁻¹; the magenta line corresponds to the CV of the blending of PPy with PTh.

Fig. S4 shows the CVs of the samples. It is apparent that the CV of cPPyT is different from that of PPy, PTh, and the blending of PPy with PTh. The cathodic peaks are centered at –0.66, –0.63, and – 0.59 V for cPPyTh, PPy, and PTh, respectively, whereas there is no apparent cathodic peaks in the CV of the blending of PPy with PTh. This result reflects the formation of copolymer of pyrrole–thiophene.

S8. Determination of weight percentage of the nonmagnetic components

Through the TG analysis (Fig. S5), the weight percentage of the polymer in the nanocomposites is estimated to be 51.4%, 49.2%, and 47.7% for $Fe_3O_4/SiO_2/cPPyTh$, $Fe_3O_4/SiO_2/PPy$, and $Fe_3O_4/SiO_2/PTh$, respectively. Also, the weight percentage of SiO₂ in Fe₃O₄/SiO₂ is determined to be 33.8% through the ICP–OES technique, using hydrofluoric acid to dissolve Fe_3O_4/SiO_2 powders. Therefore, the weight percentage of the nonmagnetic components is ca. 67.8%, 65.6%, and 64.1% for $Fe_3O_4/SiO_2/cPPyTh$, $Fe_3O_4/SiO_2/PPy$, and $Fe_3O_4/SiO_2/PTh$, respectively.

Fig. S5 TG curves of the samples.

S9. Magnetic response of Fe₃O₄/SiO₂/cPPyTh from Au(III) solution through a hand-held magnet

Fig. S6 (a) photo taken for addition of $Fe_3O_4/SiO_2/cPPyTh$ (2 mg) into Au(III) aqueous solution (90 mg L⁻¹, 10 mL) after vibration for 1 min, presenting a good dispersion; (b) photo taken after magnetic separation for 3 min with a hand-held magnet, offering a nearly colorless liquid.

S10. BET analysis

Fig. S7 (a) Sorption isotherms; (b) pore size distribution plots of the adsorbents.

Table S5 BET analysis results of the samples.

sample	$S_{\rm BET}$	total volume in pores	<i>t</i> -plot micropore area	$S_{\rm micro}/S_{\rm BET}$
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(m^2 g^{-1})$	
$Fe_3O_4/SiO_2/cPPyTh(5:1)$	24.6	0.053	13.3	54.1%
Fe ₃ O ₄ /SiO ₂ /cPPyTh (3:1)	25.9	0.055	12.5	48.3%
Fe ₃ O ₄ /SiO ₂ /cPPyTh (1:1)	36.0	0.033	9.8	27.2%
Fe ₃ O ₄ /SiO ₂ /cPPyTh (1:5)	22.0	0.072	7.9	35.9%
Fe ₃ O ₄ /SiO ₂ /PPy	26.9	0.066	10.1	37.5%
Fe ₃ O ₄ /SiO ₂ /PTh	16.4	0.043	5.5	33.5%

S11. Adsorption properties of the samples

S11.1 Effect of solution pH

The distribution of negatively charged Au(III) species, such as $AuCl_4^-$, $AuCl_3(OH)^-$, $AuCl_2(OH)_2^-$, $AuCl(OH)_3^-$, and $Au(OH)_4^-$, is highly pH-dependent.⁸ As the solution pH increases, the concentration of more hydroxyated Au(III) species increases concomitant with the decrease in concentration of both $AuCl_4^-$ and less hydroxyated Au(III) species, according to the following sequences:

$$AuCl_{4}^{OH^{-}} \rightarrow AuCl_{3}(OH)^{-} \xrightarrow{OH^{-}} AuCl_{2}(OH)_{2}^{-} \xrightarrow{OH^{-}} AuCl(OH)_{3}^{-} \xrightarrow{OH^{-}} Au(OH)_{4}^{-}$$

To evaluate the effect of solution pH on Au(III) recovery, 1 mg of sample powders were dispersed into an aliquot of 10 mL of Au(III) solution (90 mg L^{-1}) with pH ranging from 2 to 5.5. The solution pH was adjusted through addition of anhydrous sodium acetate. The dispersions were oscillated in a constant-temperature water-bathing vibrator (HZ-9613Y, Jiangsu, China) for 12 h, operating with a reciprocating vibration rate of 100 rpm at room temperature. After magnetic separation, the supernates were sampled and analyzed on a PerkinElmer Optima 7000DV inductively coupled plasma–optical emission spectrometer (ICP–OES).

For Fe₃O₄/SiO₂/PTh, the equilibrium adsorption capacity (Q_e) of the adsorbent monotonously increases with increasing pH from 2 to 5.5 (Fig.S8a). In the case of Fe₃O₄/SiO₂/cPPyTh and Fe₃O₄/SiO₂/PPy, the Q_e gradually increases with increasing pH from 2 to 4 and then stabilizes at the pH range of 4–5.5.

According to the ζ -potential plots (Fig. 4B in the text), the positive charges upon the adsorbents decrease as the solution pH increases, rendering isoelectric points at 3.4, 3.8, and 6.1 for Fe₃O₄/SiO₂/PTh, Fe₃O₄/SiO₂/cPPyTh, and Fe₃O₄/SiO₂/PPy, respectively. This result indicates that the increase in solution pH does not favour adsorption of Au(III) upon the adsorbents, due to electrostatic repulsion. However, the equilibrium adsorption capacity (Q_e) of the adsorbents increases with increasing pH from 2 to 5.5 (Fig.S8a). Further increase in solution pH over 5.5 may cause

solution turbid, probably due to the formation of insoluble gold acetate. As a result, we performed Au(III) recovery from solution with pH 5 in the continued experiments.

As documented in literature,⁸ the existing forms of Au(III) species in solution with pH 5 are mainly $AuCl_4^-$ and $AuCl_3(OH)^-$, accompanying with a small amount of $AuCl_2(OH)_2^-$. Also, complexation between Au(III) and N/S heteroatoms is weakly sensitive to solution pH.² Therefore, the adsorption of Au(III) species upon the N-containing adsorbents is mainly controlled by hydrogen bonding and complexation between Au(III) and heterocycles, rather than by electrostatic interactions. As for Au(III) adsorption upon Fe₃O₄/SiO₂/PTh, both complexation and ion exchange between Cl⁻ and gold anions are responsible for the adsorption process. This is reflected by the XPS result (Fig. S3d), where signals of elemental chlorine are almost eliminated after Au(III) recovery.

S11.2 Adsorption kinetics

Fig.S8b shows the kinetics plots of Q_1 versus *t*, where Q_1 represents the adsorption capacity (mg g⁻¹) at time of *t* (min). It is found that the time for the adsorbents to reach adsorption equilibrium is ca. 4 h. All the Fe₃O₄/SiO₂/cPPyTh samples with different N/S ratios exhibit superior equilibrium adsorption capacity (Q_e) compared with Fe₃O₄/SiO₂/PPy and Fe₃O₄/SiO₂/PTh. Also, the Q_e values gradually increase from 803.5 to 845.9 mg g⁻¹ as the N/S ratio increases from 0.8 to 12 (Fig. S8b inset). Further increase in N/S ratio does not favour the increase in Q_e value. The Fe₃O₄/SiO₂/cPPyTh sample with N/S of 12 corresponds to the sample synthesized with pyrrole/thiophene (Py/Th) molar ratio of 3 in the starting materials, and named Fe₃O₄/SiO₂/cPPyTh (3:1). More significantly, the adsorption capacity dramatically increases to 559.7, 516.1, 496.7, 310.2, 259.4, and 193.7 mg g⁻¹ within 5 min, and reaches 66.2%, 61.8%, 60.8%, 38.6%, 57.4%, and 47.6% of the Q_e for Fe₃O₄/SiO₂/cPPyTh (3:1), Fe₃O₄/SiO₂/cPPyTh (1:1), Fe₃O₄/SiO₂/cPPyTh (1:5), Fe₃O₄/SiO₂/PPy, and Fe₃O₄/SiO₂/PTh in sequence. The rapid enrichment of Au(III) species upon the magnetic adsorbents is beneficial for Au(III) recovery with high throughput. To reveal further information on adsorption of Au(III) upon the adsorbents, the adsorption kinetics data are

analyzed with Lagergren pseudo-first order,⁹ pseudo-second order,⁹ Elovich,¹⁰ and intraparticle diffusion kinetics models,¹¹ whose linear forms are presented from eq 6 to eq 9, respectively.

Fig. S8 (a) Equilibrium adsorption capacity of the adsorbents as a function of solution pH; (b) kinetics plots; inset in b is the plot of Q_e versus N/S atomic ratio; (c) plots derived from the pseudo-second order kinetics model; (d) plots derived from the intraparticle diffusion model; (e) adsorption isotherms; (f) plots of $\ln(mQ_e/C_e)$ versus 1/T. $\ln(Q_e - Q_t) = \ln Q_e - k_1 t$ (6)

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$
(7)

$$Q_t = \frac{1}{\beta} \ln (\alpha \beta) + \frac{1}{\beta} \ln(t)$$
(8)
$$Q_t = k_{id} t^{0.5} + C$$
(9)

where k_1 , k_2 , and k_{id} represent the corresponding rate constant; α is the initial adsorption rate; β and *C* are constants related to desorption and the thickness of boundary layer, respectively.

In general, the adsorption capacity of an adsorbent is related to the surface functionalities and textural parameters such as specific surface area (S_{BET}) and pore size distribution (PSD). After examination by the BET method, the S_{BET} of the adsorbents is determined to be 24.6, 25.9, 36.0, 22.0, 26.9, and 16.4 m² g⁻¹ for Fe₃O₄/SiO₂/cPPyTh (5:1), Fe₃O₄/SiO₂/cPPyTh (3:1), Fe₃O₄/SiO₂/cPPyTh (1:1),Fe₃O₄/SiO₂/cPPyTh (1:5), Fe₃O₄/SiO₂/PPy, and Fe₃O₄/SiO₂/PTh in sequence (Table S5). In association with the adsorption behaviors of the adsorbents toward Au(III) species (Fig. S8b), there is no simple relationship between the adsorption capacity and the S_{BET} . Nevertheless, the $Fe_3O_4/SiO_2/cPPyTh$ (5:1, 3:1, and 1:5) samples with S_{BET} close to that of $Fe_3O_4/SiO_2/PPy$ have superior Q_e values to that of the latter. This result reveals that the coexistence of N and S makes a positive contribution to the adsorption capacity of the adsorbents. As determined by the CV measurements (Fig. S4), the upper band of the lowest unoccupied molecular orbital (LUMO) level for cPPyTh is higher than that for PPy and PTh (page 5 in the text), a situation that is beneficial for Au(III) recovery upon Fe₃O₄/SiO₂/cPPyTh through an adsorption-reduction mechanism. For $Fe_3O_4/SiO_2/cPPyTh$ samples, the equilibrium adsorption capacity increases as the N/S ratio increases from 0.8 to 12, and then decreases with increasing N/S ratio to 14. This result indicates that there exists an optimal N/S ratio for Fe₃O₄/SiO₂/cPPyTh serving as adsorbents for Au(III) recovery (Fig. S8b inset). The existence of an optimal N/S ratio is attributed to the synergistic effect offered by the lower oxidation potential of pyrrole ring compared with thiophene ring but the higher affinity of S to gold ion species compared with N. For the adsorbents containing individual N or S heteroatoms, the superior adsorption capacity of Fe₃O₄/SiO₂/PPy is attributed to the relatively larger S_{BET} , lower

oxidation potential of pyrrole ring compared with thiophene ring, and to the linkage of amino groups with hydroxylated gold species (such as AuCl₃(OH)⁻ and AuCl₂(OH)₂⁻) through hydrogen bonding.

Also, it is found that the *t*-plot micropore area (S_{micro}) positively contributes to the adsorption capacity. This is reflected by Table S5, where the S_{micro}/S_{BET} for Fe₃O₄/SiO₂/cPPyTh (5:1, 3:1, and 1:5) is higher than that for Fe₃O₄/SiO₂/PPy and that for Fe₃O₄/SiO₂/PTh in sequence. As shown in Fig. S7b, the samples exhibit a multimodal characteristic. The existence of micropores can be reflected by the abrupt sorption plateau at the P/P° range of 0.1–0.6 (Fig. S7a).¹² The hysteresis at P/P° over 0.8 is due to the macropores arising from particle aggregation. The micropores determined by the non-local density function theory (NLDFT) model are concentrated at 0.55–0.91 nm, and the mesopores determined by the Barrett–Joyner–Halenda (BJH) model are concentrated around ca. 15 nm, respectively (Fig. S7b and inset). The porous characteristic is beneficial for Au(III) adsorption through intraparticle diffusion (discussion below).

In view of the similar adsorption behaviors of the Fe₃O₄/SiO₂/cPPyTh samples with close Q_e value (Fig. S8b), we select Fe₃O₄/SiO₂/cPPyTh with Py/Th ratio of 1:1 as an example for further investigation. According to the results derived from the kinetics models (Table S6), the values of R^2 for the pseudo-second order approach to 1 and are higher than those for the other models (Fig.S8c). Moreover, the calculated values of equilibrium adsorption capacity ($Q_{e,cal}$) approach nearer to the experimental values ($Q_{e,exp}$) according to the pseudo-second order kinetics model. Therefore, we conclude the adsorption of Au(III) upon the adsorbents preferably follows the pseudo-second order kinetics model. It is also found that the adsorbent with relatively higher $Q_{e,exp}$ has a relatively smaller k_2 but a relatively higher initial adsorption rate (r_i), which can be calculated by eq 10.¹³

$$r_i = k_2 Q_e^2$$
 (10)

kinetics model	parameter		adsorbent	
	Parameter	Fe ₃ O ₄ /SiO ₂ /cPPyTh	Fe ₃ O ₄ /SiO ₂ /PPy	Fe ₃ O ₄ /SiO ₂ /PTh
	$k_1 ({\rm min}^{-1})$	1.224×10 ⁻²	1.213×10 ⁻²	8.32×10 ⁻³
pseudo-first order	$Q_{\rm e,cal} ({ m mg g}^{-1})$	323.0	287.2	150.8
	R^2	0.947	0.922	0.983
	k_2 (g mg ⁻¹ min ⁻¹)	1.05×10-4	1.11×10-4	1.65×10-4
	$r_{\rm i} ({\rm mg}~{\rm g}^{-1}~{\rm min}^{-1})$	72.9	35.1	19.2
pseudo-second order	$Q_{\rm e,exp} ({ m mg g^{-1}})$	816.3	545.5	337.4
	$Q_{\rm e,cal} ({\rm mg}~{\rm g}^{-1})$	833.3	561.8	341.3
	R^2	0.998	0.998	0.994
	α (mg g ⁻¹ min ⁻²)	1.13×10 ⁴	338.8	967.1
Elovich	β (mg g ⁻¹ min ⁻¹)	1.34×10 ⁻²	1.33×10 ⁻²	2.85×10 ⁻²
	R^2	0.992	0.974	0.937
intraparticle diffusion	$k_{\rm id}({\rm mg}~{\rm g}^{-1}~{\rm min}^{-1})$	16.8	17.3	8.85
	R^2	0.916	0.875	0.987

Table S6 Kinetics parameters for Au(III) adsorption upon the adsorbents.

Based on the results from the Elovich model, the relatively high α values indicate covalent combination between Au(III) species and the adsorbents through coordination bonding,¹¹ especially for the S-containing adsorbents. In addition, the plots derived from the intraparticle diffusion model exhibit a multilinear feature (Fig.S8d). This indicates the adsorption process involves two or more steps.⁹ The first linear portions with relatively high slope represent the rapid adsorption through macropore diffusion, and the second linear portions correspond to adsorption through mesopore/micropore diffusion. The multimodal porous characteristic of the adsorbents can be reflected by their PSD plots (Fig. S7b).

S11.3 Adsorption isotherms

Fig. S8e shows the adsorption isotherms of the adsorbents toward Au(III). The Langmuir,^{1,4} Freundlich,^{1,4} and Dubinin–Radushkevich $(D-R)^{1,14}$ isotherm equations are used to interpret the

adsorption data. The Langmuir model assumes that the uptake of metal ions occurs on a homogeneous surface by monolayer adsorption without any interaction between adsorbed ions.⁴ The Langmuir isotherm equation is expressed as eq 1:

$$\frac{C_e}{Q_e} = \frac{1}{K_L Q_m} + \frac{C_e}{Q_m} \tag{1}$$

where C_e is the equilibrium concentration of Au(III) in the supernate (mg L⁻¹); Q_e is the equilibrium adsorption capacity of the adsorbents (mg g⁻¹); Q_m represents the maximum adsorption capacity of the adsorbents (mg g⁻¹), and K_L the Langmuir constant (L mg⁻¹).

isotherm model	parameter	adsorbent						
	purumeter .	Fe ₃ O ₄ /SiO ₂ /cPPyTh	Fe ₃ O ₄ /SiO ₂ /PPy	Fe ₃ O ₄ /SiO ₂ /PTh				
	$Q_{\rm m}({ m mg~g^{-1}})$	819.7	555.6	374.5				
Langmuir	$K_{\rm L}$ (L mg ⁻¹)	7.51	1.18	0.52				
	R^2	0.999	0.999	0.999				
	$K_{\rm F} ({\rm mg}~{\rm g}^{-1})$	574.8	280.6	202.8				
Freundlich	п	8.65	4.72	6.49				
	R^2	0.567	0.779	0.979				
	$Q_{\rm m}({\rm mg~g^{-1}})$	939.2	647.8	377.1				
Dubinin Badushkaviah	β (mol ² J ⁻²)	2.45×10 ⁻³	4.9×10 ⁻³	3.6×10 ⁻³				
Dubinni–Kadusnkevicn	E (kJ mol ⁻¹)	14.3	10.1	11.8				
	R^2	0.729	0.873	0.974				

Table S7 Adsorption isotherm parameters for Au(III) uptake upon the adsorbents.

The Freundlich model assumes that sorption occurs on a heterogeneous surface by monolayer adsorption.^{4,14} The Freundlich isotherm equation is expressed as eq 2:

$$\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e$$
(2)

where K_F is the Freundlich constant reflecting the adsorption capacity of the adsorbents (mg g⁻¹), and n is an empirical parameter related to the intensity of adsorption. For a favorable adsorption process,

the value of *n* should lie in the range of 1-10.¹⁴

The D–R model is also based on sorption occurring on a heterogeneous surface. Using the D–R model, we can differentiate between physical and chemical adsorption.¹⁴ The D–R isotherm equation is expressed as eq 3:

$$\ln Q_e = \ln Q_m - \beta \varepsilon^2 \quad (3)$$

where β is the activity coefficient related to mean adsorption energy (mol² J⁻²), and ε is the Polanyi potential (kJ² mol⁻²), which is represented as eq 4:

$$\varepsilon = RT \ln \left(1 + \frac{1}{C_e}\right) \tag{4}$$

where *R* is the gas constant (8.314 J mol⁻¹ K⁻¹) and *T* the absolute temperature (K). The mean adsorption energy *E* (kJ mol⁻¹) can be calculated by eq 5:

$$E = \frac{1}{\sqrt{2\beta}}$$
(5)

The value of *E* gives useful information on the type of adsorption. When the value of *E* lies in the range of 8-16 kJ mol⁻¹, chemical adsorption occurs. If the value is smaller than 8 kJ mol⁻¹, the adsorption proceeds physically.¹⁴

The adsorption isotherm parameters for Au(III) uptake upon the adsorbents are provided in Table S7. Through comparison in the linear fitting correlation coefficients (R^2) of the isotherm models, we conclude that the adsorption of Au(III) species upon the adsorbents conforms to the Langmuir isotherm model rather than the Freundlich or D–R model. Also, the Q_m values of the adsorbents derived from the Langmuir model agree well with their experimental Q_e values (Fig.S8b), consolidating the above conclusion.

The $Q_{\rm m}$ values of the adsorbents are much higher than that of magnetic adsorbents in previous reports,^{2,15-17} where $Q_{\rm m}$ values are usually smaller than 200 mg g⁻¹. Moreover, Fe₃O₄/SiO₂/cPPyTh exhibits superior adsorption capacity to that of many other nonmagnetic adsorbents,¹⁸⁻²² as listed in

Table S8. Considering that cPPyTh shell accounts for 51.4 wt.% of the adsorbent, the Q_m value of cPPyTh is estimated to be 1594.7 mg g⁻¹, comparable to that of 1491.3 mg g⁻¹ for cross-linked cellulose gels.²³ In addition, from the viewpoint of the Freundlich and D–R models, chemisorption dominates the favorable adsorption of Au(III) species upon the adsorbents. This is because the values of *n* and *E* lie in the range of 1–10 and 8–16 kJ mol⁻¹ (Table S6), respectively.¹⁴

Table S8	Compari	ison in a	dsorption	capacity of	f the ad	lsorbents

adsorbent	$Q_{\rm m} ({\rm mg}~{ m g}^{-1})$	ref.
Fe ₃ O ₄ /SiO ₂ /cPPyTh	819.7	this work
Fe ₃ O ₄ /SiO ₂ /PPy	555.6	this work
Fe ₃ O ₄ /SiO ₂ /PTh	374.5	this work
C/Co nanoparticles	72	15
MPTS-modified cobalt ferrite nanoparticles	120.5	16
Fe ₃ O ₄ /fir sawdust composite	188.7	17
SH-modified Fe ₃ O ₄ /SiO ₂ nanoparticles	84.8	2
Hydrothermal carbon spherules	504.3	28
Melamine-formaldehyde-thiourea chelating resin	48	31
Glutaraldehyde-crosslinked chitosan beads	280	29
polystyrene-supported bis-8-oxyquinoline-terminated open-chain crown ether	614.6	18
2-aminothiazole functionalized polystyrene	713.8	19
Graphene oxide	108.3	13
Thiol-ene photoclick hydrogels	125	20
Aminomethyl pyridine-modified cellulose	537.8	21
Cross-linked cellulose gels	1491.3	22

S11.4 Adsorption thermodynamics

To determine whether the adsorption of Au(III) upon the adsorbents proceeds spontaneously, the adsorption experiments were also performed at 30, 35, 40, and 45 °C for 4 h. The adsorption thermodynamics data are analyzed with eqs 11 and 12:²³

$$\ln \frac{mQ_e}{C_e} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$
(11)
$$\Delta G^{\circ} = -RT ln \left(\frac{mQ_e}{C_e}\right)$$
(12)

where ΔS° (J mol⁻¹ K⁻¹), ΔH° (kJ mol⁻¹), and ΔG° (kJ mol⁻¹) are the variations in standard entropy, enthalpy, and in Gibbs energy, respectively; *m* is the dose of the adsorbent (g L⁻¹), and the ratio of mQ_e/C_e is referred to as adsorption affinity.

- Inc. hourd	ΔS°	ΔH°	ΔG° (kJ mol ⁻¹)/ $Q_{\rm e}$ (mg g ⁻¹) at different temperatures (K)							
adsorbent	(J mol ⁻¹ K ⁻¹)	(kJ mol ⁻¹)	298	303	308	313	318			
Fe ₃ O ₄ /SiO ₂ /cPPyTh	438.5	15.02	-5.79/816.3	-8.05/859.5	-9.98/865.0	-12.23/869.7	-14.68/874.8			
Fe ₃ O ₄ /SiO ₂ /PPy	53.4	1.56	-2.93/545.5	-3.17/597.2	-3.43/606.4	-3.70/618.3	-4.00/634.2			
Fe ₃ O ₄ /SiO ₂ /PTh	22.0	0.88	0.77/337.4	0.66/346.9	0.55/353.7	0.44/356.1	0.33/366.3			

Table S9 Thermodynamics parameters for Au(III) adsorption upon the adsorbents.

Fig.S8f shows the plots of $\ln(mQ_e/C_e)$ versus 1/T. The values of ΔG° , ΔS° , and ΔH° in Table S9 are determined with eq 12 and by linear fitting the plots in Fig.S8f. It is found that the adsorbent having relatively higher Q_e values possesses relatively higher ΔS° and ΔH° values for Au(III) adsorption. The positive values of ΔS° and ΔH° reflect endothermic adsorption with increase in degree of disorder at the adsorbent/liquid interface.²³ The negative ΔG° values along with decrease in ΔG° with increasing temperature indicate spontaneous adsorption of Au(III) upon the adsorbents. However, the adsorption of Au(III) upon Fe₃O₄/SiO₂/PTh presents positive ΔG° values, suggesting non-spontaneous adsorption processes at the measured temperature range (25–45 °C). Reminding of the surface of Fe₃O₄/SiO₂/PTh in solution with pH 5 is more negatively charged in comparison with that of N-containing adsorbents, the non-spontaneous adsorption is attributed to the relatively strong electrostatic repulsion between Fe₃O₄/SiO₂/PTh and Au(III) species.

Fig. S9 Plots of $\ln C_{\rm e}$ versue 1/T.

S11.5 Apparent isosteric heat of adsorption

Apparent isosteric heat of adsorption (ΔH_a) is well accepted as an indicator of the type of adsorption force. The values of ΔH_a can be calculated with the Clausius–Clapeyron equation:²⁴⁻²⁶

$$\frac{d \ln C_{e}}{dT} = \frac{\Delta H_{a}}{RT^{2}} \quad (13)$$
$$\ln C_{e} = -\frac{\Delta H_{a}}{RT} + C \quad (14)$$

where C_e is the equilibrium concentration of Au(III) in the supernate (mg L⁻¹) at different temperatures; *R* is the gas constant (8.314 J mol⁻¹ K⁻¹); *T* is the solution temperature in Kelvin (K), and *C* the integration constant.

Fig. S9 shows the plots of $\ln C_e$ versus 1/T according to eq 14. The fitting curves of the plots offer high correlation coefficients, giving $-\Delta H_a$ values of 121.6, 10.3, and 3.24 kJ mol⁻¹ for Au(III) adsorption upon Fe₃O₄/SiO₂/cPPyTh, Fe₃O₄/SiO₂/PPy, and Fe₃O₄/SiO₂/PTh, respectively. Usually, the $-\Delta H_a$ for physisorptions is smaller than 16.7 kJ mol⁻¹, and that for chemisorptions is higher than 37.7 kJ mol⁻¹.²⁴ However, the $-\Delta H_a$ for adsorbate upon adsorbent is highly dependent on the concentration of adsorbate in solution,^{25,26} making it difficult to determine the type of adsorption by virtue of apparent isosteric heat of adsorption at a specific adsorbate concentration in solution. As mentioned before, the type of adsorption can be evaluated from the viewpoint of the Freundlich and D–R models.

S12. Calculation results of S_{Au} versus interfering ions

adaanhant	ion		S_{Au}^{a} at different adsorbent doses (mg)						average S	
	IOII	1	2	4	8	12	16	- average S_{Au}	average S _{Au} °	
	Mg	3.7766	4.92437	4.88585	4.79931	4.91492	5.04189	4.723823	52302.15742	
	Cu	2.84828	4.58674	4.35398	4.43538	4.47631	4.41245	4.185523	15164.3552	
	Zn	2.92823	4.73537	4.73954	4.82829	4.95081	5.07778	4.543337	34533.15306	
Fe ₃ O ₄ /SIO ₂ /cPPy1n	As	_c	4.92437	4.87102	4.94136	5.13299	5.25996	5.02594	104784.5902	
	Cd	—	_	_	5.82284	5.93992	6.02904	5.9306	839347.43012	
	Pb	—	_	_	_	_	_	œ	∞	
	Mg	2.71361	3.40911	4.08034	3.80873	3.67766	3.68225	3.56195	3613.69112	
	Cu	1.64929	2.42065	3.09034	3.12707	3.08749	3.12513	2.749995	558.35139	
	Zn	2.05914	2.81459	3.42646	3.42813	3.44863	3.45343	3.105063	1263.50502	
Fe ₃ O ₄ /S1O ₂ /PPy	As	3.45615	4.23137	3.84064	4.93856	5.05751	5.01424	4.423078	26188.59789	
	Cd	1.92053	2.69575	3.30816	3.33578	3.34952	3.36425	2.995665	982.4304	
	Pb	2.44308	3.14319	3.81442	3.85403	3.83067	3.87782	3.493868	3089.90739	
	Mg	2.46838	2.16315	3.24058	4.50456	4.5498	4.61591	3.590397	3858.03436	
	Cu	—	_	-	4.78113	4.60015	4.61996	4.66708	45902.91951	
	Zn	_	1.97989	3.09426	4.50456	4.57847	4.63236	3.757908	5671.38367	
Fe ₃ O ₄ /S1O ₂ /PTh	As	1.44621	1.61475	2.40386	3.8318	3.89212	3.93508	2.85397	709.19534	
	Cd	1.46788	1.64101	2.73467	4.14063	4.24262	4.26399	3.0818	1197.67805	
	Pb	_	_	-	-	-	-	œ	∞	

Table S10 Calculation results of S_{Au} versus interfering ions with different adsorbent doses.

a. The data derived from eq (3) in the text;²⁷ b. The data derived from eq of $S_{Au} = \frac{(Q_e/C_e)_{Au}}{(Q_e/C_e)_i}$, where *i* denotes the variety of interfering ions, Q_e (mg g⁻¹) and C_e (mg L⁻¹) correspond to the concentration of ions adsorbed upon the adsorbent and remnant in solution, respectively;²¹ c. The "–" denotes an infinite S_{Au} value.

S13. Evidence for the formation of Au⁰ upon the adsorbents

Fig. S10 XRD spectra of the samples after adsorption of Au(III): (a) Fe₃O₄/SiO₂/cPPyTh; (b) Fe₃O₄/SiO₂/PPy; (c)

Fe₃O₄/SiO₂/PTh.

Fig. S11 Au 4f spectrum of Fe₃O₄/SiO₂/cPPyTh@Au.

Fig. S10 shows the XRD spectra of the samples after Au(III) adsorption. After adsorption of Au(III), there are diffraction peaks corresponding to face-centered cubic Au (JCPDS 89-3697) aside from the diffraction peaks of Fe₃O₄ (JCPDS 89-2355). This result indicates an adsorption–reduction mechanism for Au(III) recovery.^{28,29} Also, the mean size of Au nanocrystals on Fe₃O₄/SiO₂/cPPyTh,

 $Fe_3O_4/SiO_2/PPy$, and $Fe_3O_4/SiO_2/PTh$ is estimated to be 43, 31, and 50 nm, respectively, using the data of (111), (200), and (220) planes.

Fig. S11 shows the high-resolution Au 4f spectrum of Fe₃O₄/SiO₂/cPPyTh@Au. It exhibits two strong peaks at 83.7 and 87.4 eV, corresponding separately to Au $4f_{7/2}$ and Au $4f_{5/2}$ of Au⁰,³⁰ in concert with the XRD result (Fig. S10).

Fig. S12 (a) TEM image of Fe₃O₄/SiO₂/cPPyTh@Au; (b) EDS pattern corresponding to the dark particles in a.

The existence of Au^0 can be differentiated from the adsorbent matrix. Au(0) tends to be densely packed to form gold nanoparticle aggregates with contrast in black (Fig. S12a). This is confirmed by the EDS pattern corresponding to the dark particles in Fig. S12a (Fig. S12b).

References

1 X. Peng, W. Zhang, L. Gai, H. Jiang, Y. Wang, L. Zhao, Dedoped Fe₃O₄/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution, Chem. Eng. J. 280 (2015) 197–205.

2 Y. Zhang, Q. Xu, S. Zhang, J. Liu, J. Zhou, H. Xu, H. Xiao, J. Li, Preparation of thiol-modified Fe₃O₄@SiO₂ nanoparticles and their application for gold recovery from dilute solution, Sep. Purif. Technol. 116 (2013) 391–397.

3 Y. Ren, H.A. Abbood, F. He, H. Peng, K. Huang, Magnetic EDTA-modified chitosan/SiO₂/Fe₃O₄ adsorbent: Preparation, characterization, and application in heavy metal adsorption, Chem. Eng. J. 226 (2013) 300–311.

4 P. Yin, M. Xu, W. Liu, R. Qu, X. Liu, Q. Xu, High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene, J. Ind. Eng. Chem. 20 (2014) 379–390.

5 A. Uygun, A. G. Yavuz, S. Sen, M. Omastová, Polythiophene/SiO₂ nanocomposites prepared in the presence of surfactants and their application to glucose biosensing, Synth. Met. 159 (2009) 2022–2028.

6 D.O. Kim, P.C. Lee, S.J. Kang, K. Jang, J.H. Lee, M.H. Cho, J.D. Nam, In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique, Thin Solid Films 517 (2009) 4156–4160.

7 M.B. Clark Jr., C.A. Burkhardt, J.A. Gardella Jr., Surface studies of polymer blends. 3. An ESCA,
IR, and DSC study of poly(ε-caprolactone)/poly(vinyl chloride) homopolymer blends,
Macromolecules 22 (1989) 4495–4501.

8 M. Wojnicki, E. Rudnik, M. Luty-Błocho, K. Pacławski, K. Fitzner, Kinetic studies of gold(III) chloride complex reduction and solid phase precipitation in acidic aqueous system using dimethylamine borane as reducing agent, Hydrometallurgy 127–128 (2012) 43–53.

9 Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115– 124.

10 R.J. Atkinson, F.J. Hingston, A.M. Posner, J.P. Quirk, Elovich equation for the kinetics of isotopic exchange reactions at solid–liquid interfaces, Nature 226 (1970) 148–149.

11 R.R. Sheha, A.A. El-Zahhar, Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions, J. Hazard. Mater. 150 (2008) 795–803.

12 E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon 44 (2006) 2498–2507.

13 L. Liu, S. Liu, Q. Zhang, C. Li, C. Bao, X. Liu, P. Xiao, Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide, J. Chem. Eng. Data 58 (2013) 209–216.

14 Y.M. Hao, M. Chen, Z.B. Hu, Effective removal of Cu(II) ions from aqueous solution by aminofunctionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392–399.

15 M. Rossier, F.M. Koehler, E.K. Athanassiou, R.N. Grass, B. Aeschlimann, D. Günther, W.J. Stark, Gold adsorption on the carbon surface of C/Co nanoparticles allows magnetic extraction from extremely diluted aqueous solutions, J. Mater. Chem. 19 (2009) 8239–8243.

16 A. Kraus, K. Jainae, F. Unob, N. Sukpirom, Synthesis of MPTS-modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III), J. Colloid Interface Sci. 338 (2009) 359–365.

17 M. Bayat, M.H. Beyki, F. Shemirani, One-step and biogenic synthesis of magnetic Fe_3O_4 -Fir sawdust composite: application for selective preconcentration and determination of gold ions, J. Ind. Eng. Chem. 21 (2015) 912–919.

18 C. Sun, C. Li, C. Wang, R. Qu, Y. Niu, H. Geng, Comparison studies of adsorption properties for Hg(II) and Au(III) on polystyrene-supported bis-8-oxyquinoline-terminated open-chain crown ether, Chem. Eng. J. 200–202 (2012) 291–299.

19 C. Xiong, S. Zhou, X. Liu, Q. Jia, C. Ma, X. Zheng, 2-Aminothiazole functionalized polystyrene for selective removal of Au(III) in aqueous solutions, Ind. Eng. Chem. Res. 53 (2014) 2441–2448.

20 M. Fırlak, E.K. Yetimoğlu, M.V. Kahraman, Adsorption of Au(III) ions from aqueous solutions by thiol-ene photoclick hydrogels and its application to electronic waste and geothermal water, J. Water Process Eng. 3 (2014) 105–116.

21 Z. Dong, J. Liu, W. Yuan., Y. Yi, L. Zhao, Recovery of Au(III) by radiation synthesized aminomethyl pyridine functionalized adsorbents based on cellulose, Chem. Eng. J. 283 (2016) 504–513.

22 B. Pangeni, H. Paudyal, M. Abe, K. Inoue, H. Kavakita, K. Ohto, B.B. Adhikari, S. Alam, Selective recovery of gold using some cross-linked polysaccharide gels, Green Chem. 14 (2012) 1917–1927.

23 M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe₃O₄ magnetic nanocomposite, J. Hazard. Mater. 190 (2011) 381–390.

24 Y.F. Pan, C.T. Chiou, T.F. Lin, Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD). Environ. Sci. Pollut. Res. 17 (2010) 1401–1410.

25 V.C. Srivastava, I.D. Mall, I.M. Mishra, Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA), Chem. Eng. J. 132 (2007) 267–278.

26 Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Ultrasound-assisted catalytic degradation of methyl orange with Fe₃O₄/polyaniline in near neutral solution, Ind. Eng. Chem. Res. 54 (2015) 2279–2289.

27 C. Xiong, S. Zhou, X. Liu, Q. Jia, C. Ma, X. Zheng, 2-Aminothiazole functionalized polystyrene for selective removal of Au(III) in aqueous solutions, *Ind. Eng. Chem. Res.*, 2014, 53, 2441–2448.
28 F. Wang, J. Zhao, M. Zhu, J. Yu, Y.S. Hu, H. Liu, Selective adsorption–deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: a reduction–deposition coupled mechanism, J. Mater. Chem. A 3 (2015) 1666–1674.

29 S.I. Park, I.S. Kwak, S.W. Won, Y.S. Yun, Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-

tunable sorbents for separation of precious metals, J. Hazard. Mater. 248-249 (2013) 211-218.

30 J. Sundaramurthy, R. Dharmarajan, M.P. Srinivasan, Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly, Thin Solid Films 589 (2015) 238–245.
31 A. Aydın, M. İmamoğlu, M. Gülfen, Separation and Recovery of Gold(III) From Base Metal Ions

Using Melamine-Formaldehyde-Thiourea Chelating Resin, J. Appl. Polym. Sci. 107 (2008) 1201-

1206.