Supporting Information

Experimental:

Preparation of bulk $\mathrm{VO}_{2}(B)$:

VO_{2} (B) was prepared from $\mathrm{NH}_{4} \mathrm{VO}_{3}$ (Aldrich) solution dissolved in oxalic acid by hydrothermal technique similar to previously reported by Xie and the co-workers. ${ }^{1}$ In typical procedure 1 mmol of $\mathrm{NH}_{4} \mathrm{VO}_{3}$ was dissolved in 15 ml of deionized water, then 1 M oxalic acid (Aldrich) was added dropwise until pH 1.3. The mixture was then placed in a 23 ml Teflon lined autoclave with stainless steel shell and kept for 1 day at $200^{\circ} \mathrm{C}$. After cooling down to room temperature the product was washed with deionized water and pure ethanol at least three times to remove any impurities. Finally, the $\mathrm{VO}_{2}(\mathrm{~B})$ was dried in air at $60^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$.

Figure S1: (a) Powder XRD patterns for commercial VO_{2} (which matches well with the standard pattern for $\mathrm{VO}_{2}(\mathrm{M})$, (JCPDS No. 082-0661)), compared with that after 6 days of reflux in water at 60 ${ }^{\circ} \mathrm{C}$; inset in (a) shows the SEM image of the exfoliated $\mathrm{V}_{2} \mathrm{O}_{5} \cdot \mathrm{nH}_{2} \mathrm{O}$ material obtained from $\mathrm{VO}_{2}(\mathrm{M})$ after 6 days of reflux. (b) XPS spectrum for $\mathrm{V}_{2} \mathrm{O}_{5} \cdot 0.55 \mathrm{H}_{2} \mathrm{O}$ nanosheets; inset in (b) shows the deconvolution of $\vee 2 p_{3 / 2}$ peak.

Figure S2. (a) Vanadium K-edge XANES spectra of $\mathrm{V}_{2} \mathrm{O}_{5} \cdot 0 \cdot 55 \mathrm{H}_{2} \mathrm{O}$ nanosheets (red line) and $\mathrm{VO}_{2}(\mathrm{~B})$ (black line); (b) Vanadium K-edge XANES spectra of standard commercial $\mathrm{V}_{2} \mathrm{O}_{5}$ (red line) and VO_{2} (black line).

Figure S3: Powder XRD patterns for $\mathrm{VO}_{2}(\mathrm{~B})$ after refluxing for 24 h at room temperature in pure deionized water, 0.8 M NaCl solution, and 0.8 M LiCl solution.

Figure S4: (a) Powder XRD patterns for $\mathrm{VO}_{2}(\mathrm{~B})$ after refluxing in water for 5 days at $22^{\circ} \mathrm{C}$, compared with that refluxed in water for the same period at 40 , and $60^{\circ} \mathrm{C}$; (b) powder XRD patterns for bulk $\mathrm{VO}_{2}(\mathrm{~B})$, compared with that refluxed in water for 1 and 2 days at $60^{\circ} \mathrm{C}$; and (c) powder XRD patterns for $\mathrm{VO}_{2}(\mathrm{~B})$ after refluxing in water for 6 days at $60^{\circ} \mathrm{C}$, compared with that refluxed in water for 4 days at $60^{\circ} \mathrm{C}$ and 2 days at $22^{\circ} \mathrm{C}$.

Figure S5: (a) Powder XRD pattern of uncoated MW-CNT and that coated with our exfoliated material using diluted suspension, (b) and (c) SEM images of the coated MW-CNT at different magnification. (d) SEM images of cross-section of the four electrodes used in our study.

Figure S6: (a) TEM image and (b) the corresponding SAED pattern of $\mathrm{V}_{2} \mathrm{O}_{5} \cdot 0.55 \mathrm{H}_{2} \mathrm{O}$ nanosheets obtained from electrode VO-45 after the electrochemical cycling for 20 cycles. (c) Simulated powder pattern obtained from the SAED pattern of $\mathrm{V}_{2} \mathrm{O}_{5} \cdot 0.55 \mathrm{H}_{2} \mathrm{O}$ before and after cycling (simulation done using CRISP 2.2 program). ${ }^{2}$

Figure S7: Cyclic voltammograms of the uncoated MW-CNT paper and electrode VO-4 (MW-CNT paper coated with the exfoliated vanadium oxide).

Figure S8: Electrochemical impedance spectroscopy (EIS) data collected for electrodes VO-45 and VO4 at various voltages during discharge (a) and charge (b). The Nyquist plots shown above indicate that the electrode with a thicker oxide film (VO-45) is more resistive as compared to electrode VO-4.

Table S1: Comparison of the morphology and electrochemical performance of $\mathrm{V}_{2} \mathrm{O}_{5} \cdot \mathrm{nH}_{2} \mathrm{O}$ reported in this study and previously reported work.

Electrode Material Description	Morphology	Capacity $/ \mathrm{mAhg}^{-1}$	C-rate or current density $/$ mAg^{-1}	Potential range $/ \mathrm{V}$	Reference

References:

1 L. Liu, T. Yao, X. Tan, Q. Liu, Z. Wang, D. Shen, Z. Sun, S. Wei and Y. Xie, Small, 2012, 8, 3752-6.
2 S. Hovmöller, Ultramicroscopy, 1992, 41, 121-135.
3 X. Rui, J. Zhu, W. Liu, H. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H. H. Hng, T. M. Lim and Q. Yan, RSC Adv., 2011, 1, 117-122.

4 G. Du, K. H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liu and H. Liu, RSC Adv., 2011, 1, 690697.

5 Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An and L. Mai, J. Mater. Chem. A, 2015, 3, 8070-8075.

6 Q. Liu, Z.-F. Li, Y. Liu, H. Zhang, Y. Ren, C.-J. Sun, W. Lu, Y. Zhou, L. Stanciu, E. a Stach and J. Xie, Nat. Commun., 2015, 6, 6127.

7 A. Moretti, F. Maroni, I. Osada, F. Nobili and S. Passerini, ChemElectroChem, 2015, 2, 529-537.

