Supporting Information

Synthesis of Modified Fullerenes for Oxygen Reduction Reactions

Rosa María Girón," Juan Marco-Martínez," Sebastiano Bellani,l", Alberto Insuasty,\# Hansel Comas Rojas," Gabriele Tullii," Maria Rosa Antognazza,ll,* Salvatore Filippone, \#,* Nazario Martín.\#,\$,*
\# Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid,
Ciudad Universitaria s/n, 28040 Madrid, Spain
${ }^{\text {I }}$ Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
${ }^{\ddagger}$ Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, Genova 16163, Italy
§ IMDEA- Nanociencia, C/ Faraday, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain

Contents

General Methods and Materials page S2
Experimental Procedures and Characterizations page S2
Representative IR spectra of compounds 2Ir, 2Rh page S8
Representative ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds page S9
Determination of the Configuration by X-ray Analysis page S15
Photo-electrochemical cell preparation and characterization page S17

General Methods and Materials.

The commercially available reagents and solvents were used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER AVANCE AMX-7oo in CDCl_{3} at $23^{\circ} \mathrm{C}$, and referenced to CDCl_{3}; coupling constants (J) are reported in Hz and the chemical shifts (δ) in ppm. Mass spectra were reported on a HPıooEMD (ESI), and BRUKERREFLEX (MALDI-TOF). Reactions were monitored by thin-layer chromatography carried out on 0.2 mm TLC-aluminum sheets of silica gel (Merck, TLC Silica gel $60 \mathrm{~F}_{254}$). Flash column chromatographs were performed using silica gel (230-400 mesh). For conversions, HPLC column Buckyprep (Waters) ($4.6 \times 250 \mathrm{~mm}$) was used. All these values were monitored in a 320 nm spectrophotometer detector. FTIR spectra were carried out using ATR of the solid compounds. The instrument used was a Bruker TENSOR FTIR. The spectral range was $4000-550 \mathrm{~cm}^{-1}$. X-Ray analysis was carried out in an Agilent SuperNova Cu diffractometer, equipped with an Atlas CCD detector, at 100 K using a Cryostream 700 from Agilent Cryosystems (liquid N 2).

Experimental Procedures and Characterizations.

General Procedure for the Synthesis of [($\boldsymbol{\eta}^{\mathbf{n}}$-ring)M(Pyrrolino[3,4:1,2][6o]fullerene carboxylate)Cl] (2Ir and 2Rh).

Starting pyrrolino[3,4:1,2][60]fullerene carboxylates were prepared "in situ" following a similar procedure described previously by our research group. ${ }^{1}$

[^0]A suspension of a mixture of $\mathrm{AgOAc}(24 \mathrm{mg}, 0.143 \mathrm{mmol}, 1$ eq.) and (+/-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (BINAP; $89 \mathrm{mg}, 0.143 \mathrm{mmol}, 1 \mathrm{eq}$.) in 50 mL of anhydrous toluene is prepared in an 100 ml one-neck round bottom flask. After 5-10 min of stirring at $25^{\circ} \mathrm{C}$, azlactone 1 ($0.143 \mathrm{mmol}, 1$ eq.) is added to the solution. Later, [6o]fullerene ($100 \mathrm{mg}, 0.143 \mathrm{mmol}$, 1 eq.) is added and the purple mixture is stirred overnight at $25^{\circ} \mathrm{C}$. Thereafter, a solution of the corresponding metal dimer (Ir or Rh, o. 5 eq.) in DCM (5 mL) is added to the brown solution and stirred for 2 h . Finally, the solvent is evaporated under vacuum and the dark residue is purified by silica-gel column chromatography using CS_{2} as eluent (recovering unreacted [6o]fullerene). Then, DCM and mixtures of $\mathrm{DCM} / \mathrm{MeOH}$ (indicated in each case) were employed to obtain the desired products. In all cases, dark brown solids were obtained and centrifuged in dry $\mathrm{MeOH}(2 \times$ $2 \mathrm{~mL}, 15 \mathrm{~min}$ at 6000 rpm) and dried under vacuum.

General Procedure for the Synthesis of 4a-b/5a.

Starting alkynoates were prepared following the procedure described previously under copper catalysis. ${ }^{2}$

In an ordinary vial under Ar atmosphere, a suspension of the corresponding alkynoate za-c (1.0 eq.) and 1,2 -bis(diphenylphosphino)ethane (0.2 eq.) in 8.0 mL of dry toluene is prepared. After 15 min . of stirring at room temperature, [60]fullerene (1.07 eq., 0.069 mmol) is added and the mixture is stirred at room temperature overnight. Finally, the solvent is evaporated under vacuum and dark residue is then purified by silica-gel column

[^1]chromatography using CS2 as eluent (for recovering unreacted [6o]fullerene). Then, mixtures of solvents (indicated in each case) are used affording desired cyclopenteno[4,5:1,2][60]fullerene derivatives 4a-b/5a. Conversions are determined by HPLC analysis using Buckyprep (Waters) ($4.6 \times 250 \mathrm{~mm}$) as column (conditions and retention times are indicated in each case).

General Procedure for the Synthesis of 4c/5b.

In an ordinary vial, a suspension of the corresponding alkyloxycarbonyl-3-phenyl-1cyclopenteno[60]fullerene $\mathbf{5 a} / \mathbf{4 b}$ (1.0 eq., $0,033 \mathrm{mmol}$) in 3.0 mL of dichloromethane is prepared. After trifluoroacetic acid (120 eq.) is added and the mixture is stirred at room temperature for five hours. Finally, the solvent is evaporated under vacuum and dark residue is then purified by precipitation in dichloromethane and separated by centrifugation (15 minutes at 6000 rpm); after that the residue is precipitated in methanol and separated by centrifugation (15 minutes at 6000 rpm) affording desired cyclopenteno[60]fullerene derivatives $\mathbf{4 c / 5 b}$.

General Procedure for the Synthesis of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{60}\right)(6)$.

This platinum- C_{60} complex was prepared following the procedure described previously using $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in toluene under a dinitrogen atmosphere. ${ }^{3}$

Characterization of compounds [($\boldsymbol{\eta}$ n-ring) M(Pyrrolino[3,4:1,2][6o]fullerene carboxylate)Cl] (2Ir and 2 Rh).

Synthesis of [$\mathbf{C p}^{*} \operatorname{Ir}(\mathbf{P y r r o l i n o [3 , 4 : 1 , 2] [6 0] f u l l e r e n e ~ c a r b o x y l a t e) C l}]$ (2Ir).

The product was obtained following the standard procedure as a brown solid after FC, eluent DCM and DCM/MeOH (100:1) in 40% isolated yield. ${ }^{1} \mathrm{H}^{2}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.51(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 2.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.57(\mathrm{~s}, 15 \mathrm{H}$, Cp*) ppm. ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.88(\mathrm{HMBC}, \mathrm{C}=\mathrm{N}), 177.73$ (HMBC, $\mathrm{C}=\mathrm{O}$), 151.62, 151.19, 148.56, 148.12, 147.38, 147.27, 147.22, 147.18, $146.65,146.60$, 146.33, 146.20, 146.17, 146.15, 146.06, 146.00, 145.97, 145.88, 145.67, 145.63, $145.46,145.38$, $145.27,145.22,144.89$, 144.82, 144.68 , 144.36, 143.55, 143.11, 142.93, 142.87, 142.82 , 142.75 , 142.69, 142.61, 142.55, 142.07, 141.90, 141.67, 141.61, 141.36, 141.32, 140.05, 139.96,

[^2]139.78, 139.16, 137.95, 137.40, 134.98, 134.66, 132.40, 130.49 (HSQC, CH-Ph), 90.82 (HMBC, $\mathrm{C}_{3} \mathrm{sp}^{3}$-adduct), 86.51 ($\mathrm{C}_{5} \mathrm{sp}^{3}$), 85.93 ($\mathrm{HMBC}, \mathrm{Cp}^{*}$), 72.46 ($\mathrm{HMBC}, \mathrm{C}_{4} \mathrm{sp}^{3}$-adduct), 33.46 (HSQC, Me), 9.25 (HSQC, Me-Cp*) ppm. HRMS (MALDI+) [M+Na]+ Calc. for $\mathrm{C}_{80} \mathrm{H}_{23} \mathrm{ClNNaO}_{2} \mathrm{Ir}$: 1280.0939 ; found: 1280.0934 . ATR-FTIR $v(\mathrm{C}=\mathrm{O})=1661 \mathrm{~cm}^{-1}$.

Synthesis of [Cp*Rh(Pyrrolino[3,4:1,2][6o]fullerene carboxylate)Cl] (2Rh).

The product was obtained following the standard procedure as a brown solid after FC, eluent DCM and DCM/MeOH (100:1 to 40:1) in 38% isolated yield. ' ${ }^{1}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$), 2.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.61 (s, $\left.{ }_{15} \mathrm{H}, \mathrm{Cp}^{*}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.27$ ($\mathrm{C}=\mathrm{N}$), 176.44 ($\mathrm{C}=\mathrm{O}$), $151.95,151.49,148.74,147.81,147.54,147.33,147.17,146.62,146.56$, 146.29, 146.21, 146.14, 146.11, 145.99, 145.95, 145.91, 145.83, 145.58, 145.42, 145.28, 145.23, 145.18, $145.13,144.80,144.68$, 144.34, 143.53, 142.90, 142.87, 142.86, 142.72, 142.69, 142.57, 142.51, 142.04, 141.92, 141.89, 141.62, 141.43, 141.32, 140.07, 139.91, 139.71, 139.05, 137.85, 137.61, 134.82, 134.68, 132.57, 130.43 (CH-Ph), 94.34 (Cp*), 94.30 (Cp^{*}), 91.62 (HMBC, C3 sp^{3}-adduct), 86.17 $\left(\mathrm{C}_{5} \mathrm{sp}^{3}\right), 72.86$ (HMBC, $\mathrm{C}_{4} \mathrm{sp}^{3}$-adduct), 33.85 (Me), 9.29 ($\mathrm{Me}^{\left.-C p^{*}\right)}$ ppm. HRMS (MALDI +) $[\mathrm{M}+\mathrm{Na}]^{+}$Calc. for $\mathrm{C}_{80} \mathrm{H}_{23} \mathrm{ClNNaO}_{2} \mathrm{Rh}: 1190.0365$; found: 1190.0351. ATR-FTIR $v(\mathrm{C}=\mathrm{O})=$ $1642 \mathrm{~cm}^{-1}$.

Characterization of compounds alkyloxycarbonyl-3-phenyl-1-cyclopenteno [6o]fullerenes (4a-b/5a).

Synthesis of 4 a.

The adduct $4 \mathbf{a}$ was prepared according to the general procedure using ethyl-5-
 hydroxy-5-methyl-3-hexynoate 3 a ($11.1 \mathrm{mg}, 0.065 \mathrm{mmol}$), [6o]fullerene (50 mg , 0.069 mmol) and 1,2 -bis(diphenylphosphino)ethane (5.2 mg , o.0130 mmol). Conversion: 37% (eluent: hexane:CH2Cl2, 1:1). ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.57(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.36$, 151.10, 150.14, 149.18, 148.92, 148.87, 148.19, 148.10, 147.93, 147.85, 147.13, 147.11, 146.90, 146.76, 146.70, 146.48, 146.36, 146.06, 145.72, 145.34, 145.28, 145.12, 145.06, 145.00, 144.92, 144.84, 144.83, 144.80, 144.63, 144.39, 144.34, 144.29, 144.19, 144.17, 144.14, 143.91, 143.89, 143.75, 143.44, 143.10, 143.06, 142.91,
$142.88,142.74,142.49,142.48,142.23,141.60,141.44,140.88,140.35,139.06,138.07,138.01$, 136.18, 136.10, 134.55, 97.16, 87.04, 77.21, 77.03, 76.84, 76.11, 73.32, 70.64, 61.43, 59.58, 32.01, 28.44, 14.25. HRMS (MALDI+): [M+Na]+ Calc. for $\mathrm{C}_{69} \mathrm{H}_{14} \mathrm{NaO}_{3}$: 913.0841; found: 913.0821

Synthesis of $\mathbf{4} \mathbf{b}$.

The adduct $\mathbf{4} \mathbf{b}$ was prepared according to the general procedure using tert-butyl-5-hydroxy-5-methyl-3-hexynoate 3b ($12.9 \mathrm{mg}, 0.065 \mathrm{mmol}$), [60]fullerene ($50 \mathrm{mg}, 0.069 \mathrm{mmol}$) and 1,2-bis(diphenylphosphino)ethane (5.2 mg , o.0130 mmol). Conversion: 35\% (eluent: hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$). ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.67$, 151.17, 150.32, 149.16, 148.91, 148.84, 148.16, 148.12, 148.10, 147.13, 147.10, 146.98, 146.90, 146.70, 146.46, 146.35, 146.02, 145.72, 145.35, 145.28, 145.19, 145.14, 145.09, 144.92, 144.82, 144.78, 144.61, 144.36, 144.29, 144.21, 144.14, 143.90, $143.89,143.72,143.11,143.02,142.88$, 142.71, 142.66, 142.49, 142.47, 142.23, 141.51, 141.49, 140.87, 140.21, 139.64, 139.04, 138.02, 136.20, 136.10, 134.53, 97.15, 87.01, 82.76, 77.20, 77.02, 76.84, 76.34, 73.33, 70.33, 59.60, 32.02, 28.38, 28.28. HRMS (MALDI+): [M]+ Calc. for $\mathrm{C}_{71} \mathrm{H}_{18} \mathrm{O}_{3}$: 918.1256; found: 918.1234 .

Synthesis of 4c.

The adduct $\mathbf{4 c}$ was prepared according to the general procedure using ethyl-5-hydroxy-5-methyl-3-hexynoate $\mathbf{4} \mathbf{b}$ ($30 \mathrm{mg}, 0.033 \mathrm{mmol}$) and o. 3 mL of TFA. Yield: 77%. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{THF}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H})$, 1.92 ($\mathrm{s}, 3 \mathrm{H}$), 1.8 o ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13 C}$ NMR ($176 \mathrm{MHz}, \mathrm{THF}$) $\delta 161.87$, 149.91, 148.96, 147.14, 147.06, 146.88, 146.83, 146.76, 146.33, 146.12, 145.76, 145.49, 145.07, 144.99, 144.88, 144.66, 144.42, 144.31, 144.23, 143.92, 143.85, 143.62, 143.42, 143.39, 143.27, 142.97, 142.78, $142.74,142.73,142.62,142.38,142.36,142.25,142.22,142.20,142.11,142.07,141.79,141.77,141.29$, 140.91, 140.82, 140.79, 140.77, 140.39, 140.29, 139.55, 139.24, 138.69, 138.02, 136.84, 135.99, 135.62, 134.07, 133.89, 132.65, 95.16, 85.36, 74.49, 71.78, 68.89, 65.03, 64.91, 64.81, 64.74, 64.68, 64.62, 64.55, 64.43, 64.30, 57.78, 29.24, 25.63, 23.01, 22.92, 22.80, 22.70, 22.59, 22.47, 22.36, 22.25. HRMS (ESI): [M-H]- Calc. for $\mathrm{C}_{67} \mathrm{H}_{9} \mathrm{O}_{3}$: 861.0557; found: 861.0375.

[^3]

The adduct 5 a was prepared according to the general procedure using tert-butyl-4-phenyl-3-butynoate 3 c (3.4 mg , o.016 mmol), [6o]fullerene ($12 \mathrm{mg}, 0.017 \mathrm{mmol}$) and 1,2-bis(diphenylphosphino)ethane ($1.6 \mathrm{mg}, 0.004$ mmol). Conversion: 49\% (eluent: hexane:CH2Cl2, 3:1). ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.65(\mathrm{~s}, 9 \mathrm{H}), 6.02(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.8 \mathrm{o}(\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4$, 29.7, 63.3, 76.2, 76.4, 82.8, 128.2, 129.1, 129.8, 134.1, 135.5, 135.8, 135.9, 139.0, 139.3, 139.46, 139.50, 139.7, 140.2, 141.6, 141.6, 141.7, 141.8, 141.93, 141.94, 142.0, 142.1, 142.21, 142.22, 142.39, 142.42 , 142.62, 142.64, 142.68, 142.70, 143.07, 143.12, 144.36, 144.43, 144.5, 144.8, 144.97, 144.99, 145.1, 145.30, 145.31, 145.34, 145.4, 145.5, 145.6, 145.7, 145.9, 145.98, 145.99, 146.1, 146.17, 146.20, $146.23,146.3,146.4,147.3,147.4,148.1,148.7,150.6,151.2,153.9,157.2,163.0 \mathrm{ppm}$. HRMS (MALDI+): [M]+ Calc. for $\mathrm{C}_{74} \mathrm{H}_{16} \mathrm{O}_{2}$: 936.1150; found: 936.1165.

Representative IR spectra of compounds $2 \mathrm{Ir}, 2 \mathrm{Rh}$

[CP ${ }^{*} \operatorname{Ir}($ Pyrrolino[3,4:1,2][6o]fullerene carboxylate) $\mathbf{C l}]$ (2Ir).

[$\mathbf{C p}^{*} \mathbf{R h}(\mathbf{P y r r o l i n o [3 , 4 : 1 , 2] [6 0] f u l l e r e n e ~ c a r b o x y l a t e)} \mathbf{C l}](2 R h)$.

Representative ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds.

[Cp ${ }^{*} \operatorname{Ir}(\mathbf{P y r r o l i n o [3 , 4 : 1 , 2] [6 0] f u l l e r e n e ~ c a r b o x y l a t e) C l] ~ (2 I r) . ~}$

[Cp*Rh(Pyrrolino[3,4:1,2][6o]fullerene carboxylate)Cl] (2Rh).

$4 a$.

4b.

4c.

Determination of the Configuration by X-Ray Analysis ${ }^{4}$

The relative configuration of a single crystal (red small needles) of a sample of Irpyrrolino[60]fullerene hybrid $2 \mathbf{I r}$, obtained by slow evaporation of a mixture of CS_{2} /hexane, shows that iridium adopts a pseudotetrahedral geometry in a five member ring. Moreover, the metal is linked with a Cp* group and a chlorine atom that is in a trans position with respect to the methyl group of pyrroline moiety. ${ }^{5}$

Figure S1: X-ray determined crystal structure and crystal structure over the coordinate axes for compound $2 \mathbf{I r}$.

Crystal data and structure refinement for compound 2Ir

Empirical formula

$$
\mathrm{C}_{80} \mathrm{H}_{23} \mathrm{ClIrNO}_{2}
$$

[^4]| Formula weight | 1257.64 |
| :---: | :---: |
| Temperature (K) | 100(1) ${ }^{\circ}$ |
| Wavelength (CuKa) | 1.54184 A |
| Crystal system | Tetragonal |
| Space group | 141/a |
| Unit cell dimensions | $a=34.7078(6) \AA \quad \alpha=90^{\circ}$ |
| | $\mathrm{b}=34.7078(6) \AA \quad \beta=90^{\circ}$ |
| | $\mathrm{c}=18.0586(3) \AA \quad \gamma=90^{\circ}$ |
| Volume | 21754.0 (6) \AA^{3} |
| Z | 16 ($\mathrm{z}^{\prime}=1$) |
| Density (calculated) | $1.536(1) \mathrm{g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $5.636 \mathrm{~mm}-1$ |
| F(ooo) | 9920 |
| Crystal size | $0.02 \times 0.02 \times 0.25 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.55 to 72.46°. |
| Index ranges | $-29<=\mathrm{h}<=3 \mathrm{O}, \mathrm{o}<=\mathrm{k}<=42, \mathrm{o}<=\mathrm{l}<=22$ |
| Reflections collected | 86819 |
| Independent reflections | 10773 [R (int) $=0.149$] |
| Absorption correction | Analytical |
| Refinement method: | SHELXL97 |
| Data / restraints / parameters | 10773 / o / 772 |
| Goodness-of-fit on F^{2} | 0.918 |
| Final R indices [I>2 ${ }^{\text {(I) }}$] | $\mathrm{R} 1=0.0461, \mathrm{wR2}=0.1022$ |
| R indices (all data) | $\mathrm{R} 1=0.00835, \mathrm{wR} 2=0.1129$ |
| Largest diff. peak and hole | 1.646 and -1.434 $\mathrm{e}^{-3}{ }^{-3}$ |

Photo-electrochemical cell preparation and characterization

$\mathrm{SnO}_{2}: \mathrm{F}$ (FTO) TEC 15 covered glass substrates ($\sim 200 \mu \mathrm{~m}$, thickness, $15 \Omega / \mathrm{sq}$ resistance) were purchased from Dyesol. rr-P3HT (regio-regularity of 99.5%; average molecular weight 54,000-75,000 g/mol, Sigma-Aldrich), acting as electron donor in a BHJ configuration, was used without any further purification.

Blends with different fullerene electron acceptors synthesized in this work ($\left.\mathrm{P}_{3} \mathrm{HT}: f u l l e r e n e ~ a r c h i t e c t u r e\right) ~ w e r e ~ r e a l i z e d ~ b y ~ u s i n g ~ c h l o r o b e n z e n e ~ a s ~ t h e ~ o r g a n i c ~$ solvent for both components, dissolved at a concentration of $20 \mathrm{~g} / \mathrm{L}$ and a relative ratio 1:1. The solutions were subsequently heated at $50{ }^{\circ} \mathrm{C}$ and stirred for 120 min , sonicated for 10 minutes at $50^{\circ} \mathrm{C}$ and finally spin coated on top of previously cleaned FTO-covered glass substrates. Spinning parameters were properly optimized in order to obtain comparable film thicknesses, in the order of 140 nm .

Photoelectrodes with bilayer-like architecture(P3HT:PCBM/fullerene) were also fabricated. In these cases, the fullerene derivative was dissolved in dichlorometane ($5 \mathrm{~g} / \mathrm{L}$ concentration), stirred for 120 min and sonicated for 10 minutes at room temperature, and finally deposited by spin coating on top of the underlying $\mathrm{P}_{3} \mathrm{HT}:$ PCBM layer.

Post thermal annealing at $130^{\circ} \mathrm{C}$ for 10 minutes in a N 2 atmosphere was carried out on all devices, in order to evaporate residual solvent and to get properly phase segregation of the blend.

The optical properties of the samples in the range of $400-700 \mathrm{~nm}$ were measured with a UV/Vis/nIR spectrometer (Perkin Elmer Lambda 1050) in transmission and reflectance mode. Absorbance values of all fabricated devices are fully comparable (Figure S2).

Electrochemical characterization was carried out in a quartz cell by using an Autolab potentiostat/galvanostat (PGSTAT 302N), in a three electrode configuration. A Pt wire was used as the counter electrode (CE) and an $\mathrm{Ag} / \mathrm{AgCl}$ electrode filled with saturated KCl solution (0.197 V versus the standard hydrogen electrode at $25^{\circ} \mathrm{C}$) was used as the reference electrode (RE). All measurements were performed by employing phosphate buffered saline solution (PBS) at pH 7.4 (obtained by mixing 39 mL of 0.1 M sodium dihydrogen phosphate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)$ and 61 mL of o. M sodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ and adjusting the final volume to 200 mL with deionized water) at room temperature $22{ }^{\circ} \mathrm{C}$. A 300 W Xe light source equipped with AM filters (Lot Quantum

Design, model LSo306) calibrated to 1 sun on the electrode surface in the electrolyte was used to illuminate the photocathode.

Linear Scan Voltammetry (LSV) and Cyclic Voltammetry (CV) techniques have been employed to evaluate the response of photocathodes. Linear Sweep Voltammetry (LSV) was performed with a scan rate of $10 \mathrm{mV} / \mathrm{s}$ while Cyclic Voltammetry has been done using $200 \mathrm{mV} / \mathrm{s}$. DO concentration solution was monitored through a commercial D.O. sensor (Oxygen meter OXI 45+, Crison). Deoxygenation of the solution was achieved purging N_{2} into the solution, while O_{2}-saturated conditions were obtained purgin O_{2}. All the data were handled by NOVA 1.10.3 package software.

Figure S2. Optical absorption spectra of BHJ ($\mathrm{P}_{3} \mathrm{HT}$:fullerene) and bilayer (P3HT:PCBM/fullerene) thin films based on P3HT as electron donor and different fullerene derivatives as electron acceptors/catalysts for promotion of ORR. Fullerene compounds include PCBM (here used as benchmark, reference material), bis-adducts fullerenes (DPM-12 and bisDPM-12), fullerenes endowing metallic catalytic centers (2Ir; ${ }_{2} \mathbf{R h} ; 6$) and metal-free organo-fullerene catalysts (4a, 4b, 4c, 5a, 5b).

Figure S3. Linear Scan Voltammetry (LSV) measurements under dark (dashed lines) and upon visible light (1 SUN) (solid lines) on FTO/P3HT:PCBM in presence and in absence of dissolved oxygen (DO). As previously demonstrated for the organic blend APFO3:PCBM, the origin of the photocurrent can be unambiguously attributed to the occurrence of ORR at the polymer/electrolyte interface.

Figure S4. Cyclic Voltammetry (CV) measurements (scan rate $200 \mathrm{mV} / \mathrm{s}$) for the best performing photoelectrochemical cells for ORR, based on BHJ thin films P3HT:6 (panel b) and $\mathrm{P}_{3} \mathrm{HT}: 4 \mathrm{c}$ (panel c), as compared to the reference standard $\mathrm{P}_{3} \mathrm{HT}:$ PCBM (panel a). The first six cycles (dark lines) are performed at fixed dissolved oxygen concentration (5.8 mg / L), under 1 SUN illumination, showing optimal repeatability. Starting from the $7^{\text {th }}$ cycle, oxygen is progressively removed from the solution, through nitrogen gas purging, and consistently photocurrent densities are substantially, progressively reduced ($7^{\text {th }}-16^{\text {th }}$ cycles, red lines). When oxygen was completely removed ($35^{\text {th }}$ cycle, blue line) photocurrent values comparable to dark current ($36^{\text {th }}$ cycle, orange line) are recorded. The origin of the photocurrent signal is thus confirmed to be due to effective promotion of ORR in all cases, as previously demonstrated for the only case of $\mathrm{P}_{3} \mathrm{HT}:$ PCBM BHJ.

Figure \mathbf{S}_{5}. Linear Scan Voltammetry (LSV) measurements (scan rate, $10 \mathrm{mV} / \mathrm{s}$) under dark (dashed lines) and upon visible light (1 SUN) (empty squares) on FTO/P3HT: PCBM (left panel), $\mathrm{FTO} / \mathrm{P}_{3} \mathrm{HT}: 4 \mathrm{c}$ (center panel) and $\mathrm{FTO} / \mathrm{P}_{3} \mathrm{HT}: 4 \mathbf{b}$ (right panel) for the $\mathrm{O}_{2}-$ ambient equilibrated ($5.8 \mathrm{mg} / \mathrm{L}$) (cyan color) and for O_{2}-saturated condition (blue color).

Figure S . Current density recorded at -0.2 V vs $\mathrm{Ag} / \mathrm{AgCl}$ upon white light illumination (1 SUN) and constant $5.8 \mathrm{mg} / \mathrm{L}$ dissolved oxygen (DO) concentration for consecutive CV cycles (scan rate $200 \mathrm{mV} / \mathrm{s}$).

Scheme S1. Four and two electron processes for oxygen reduction reaction (ORR) in both alkaline and acidic media.

Alkaline medium:
$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-} \quad$ (four electron process)
$\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{HO}_{2}+\mathrm{OH}^{-} \quad$ (two electron process)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}+2 \mathrm{e}^{-} \rightarrow 3 \mathrm{OH}^{-}$
Acidic medium:

$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	
	(four electron process)
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$	
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	

[^0]: ${ }^{1}$ Marco-Martínez J, Reboredo S, Izquierdo M, Marcos V, López JL, Filippone S, et al. Enantioselective Cycloaddition of Münchnones onto [60]Fullerene: Organocatalysis versus Metal Catalysis. J. Am. Chem. Soc., 136, 2897-2904 (2014).

[^1]: ${ }^{2}$ Andrés Suárez and Gregory C. Fu, A Straightforward and Mild Synthesis of Functionalized 3-Alkynoates. Angew. Chem. Int. Ed., 43, 3580-3582 (2004).

[^2]: ${ }^{3}$ Paul J. Fagan, Joseph C. Calabrese and Brian Malone, The Chemical Nature of Buckminsterfullerene (C_{60}) and the Characterization of a Platinum Derivative. Science, 252, 1160-1161 (1991).

[^3]: Synthesis of (3R)-1-tert-butoxycarbonyl-3-phenyl-1-cyclopenteno[4,5:1,2] [6o]fullerene (5a).

[^4]: ${ }^{4}$ SGIker technical support is gratefully acknowledged for X-ray analysis.
 ${ }^{5}$ Crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 960717 .

