Electronic Supplementary Information

Phase Behaviour and Composition in the Formamidinium-Methylammonium Hybrid Lead Iodide Perovskite Solid Solution

O. J. Weber, B. Charles and M. T. Weller

Department of Chemistry and Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath. BA2 7AY. UK. E-mail: <u>m.t.weller@bath.ac.uk</u>.

Contents

Table S1 Reactant quantities used for crystal synthesis via precipitation from hydroiodic acid (method HI)

Table S2 Reactant quantities used for crystal synthesis via Inverse solubility (method IS)

Table S3 Lattice Parameters and Cell Volumes at 300K of $FA_xMA_{1-x}PbI_3$ crystals grown via inverse solubility (IS) method.

Figure S1 ¹H NMR spectra of MAPbI₃, FAPbI₃ and FA_{0.5}MA_{0.5}PbI₃

Figure S2 Powder X-ray diffraction (PXD) patterns of MAPbl₃ and FA_xMA_{1-x}Pbl₃ $0 \le x \le 1$ in x = 0.1 increments.

Figure S3 $FA_{0.1}MA_{0.9}PbI_3$ PXD pattern, peaks used for unit cell refinement and calculated peak positions from CELREF for *I4cm* a \approx 8.89 Å c \approx 12.61 Å, *F23* a \approx 12.6 Å and *R3* a \approx 8.91 Å.

Figure S4 Pawley fits of a cubic *Pm-3m* unit cell versus a tetragonal *I4cm* unit cell to room temperature PXD patterns of FA_{0.3}MA_{0.7}PbI₃ and FA_{0.2}MA_{0.8}PbI₃

Figure S5 Pawley fits to the room temperature PXD pattern of $FA_{0.1}MA_{0.9}PbI_3$ for *I4cm*, a = 8.91 Å c = 12.59 Å, *F23* a = 12.6 Å and *Im-3* a = 12.6 Å

	Rati	ios		We	Volume HI (ml)		
Sample	MA	FA	MAI	FAI	Pb(CH ₃ CO ₂)₂ · 3H ₂ O	1 molar	
1	1	0	0.2564	0	0.6119	1.6130	
2	0.9	0.1	0.2303	0.0277	0.6106	1.6096	
3	0.8	0.2	0.2043	0.0552	0.6093	1.6062	
4	0.7	0.3	0.1784	0.0827	0.6080	1.6029	
5	0.6	0.4	0.1526	0.1100	0.6068	1.5996	
6	0.5	0.5	0.1269	0.1373	0.6055	1.5962	
7	0.4	0.6	0.1013	0.1644	0.6043	1.5929	
8	0.3	0.7	0.0758	0.1914	0.6030	1.5896	
9	0.2	0.8	0.0504	0.2182	0.6018	1.5864	
10	0.1	0.9	0.0252	0.2450	0.6005	1.5831	
11	0	1	0	0.2717	0.5993	1.5798	

Table S1 Reactant quantities used for crystal synthesis via precipitation from hydroiodic acid (method HI)

Table S2 Reactant quantities used for crystal synthesis via Inverse solubility (method IS)

0.0	001 mol	1 M solutio							
Ratio MA/FA	9:1	8:2	7:3	6:4	5:5	4:6	3:7	2:8	1:9
	wgt / g								
MAI	0.1431	0.1272	0.1113	0.0954	0.0795	0.0636	0.0477	0.0318	0.0159
FAI	0.0172	0.0344	0.0516	0.0688	0.0860	0.1032	0.1204	0.1376	0.1548
PbI2	0.4610	0.4610	0.4610	0.4610	0.4610	0.4610	0.4610	0.4610	0.4610

Table S3 Lattice Parameters and Cell Volumes at 300K of FA_xMA_{1-x}PbI₃ crystals grown via inverse solubility (IS) method.

Reduced lattice					
x in FA _x MA _{1-x} Pbl ₃	parameter / Å	Cell Volume / Å ³			
0.1	6.3047(15)	249.946(14)			
0.2	6.3102(15)	251.267(1)			
0.3	6.3122(2)	251.501(17)			
0.4	6.3199(3)	252.42(2)			
0.5	6.3319(15)	253.859(1)			
0.6	6.3333(3)	254.03(2)			
0.7	6.3479(2)	255.795(18)			
0.8	6.3543(2)	256.573(2)			
0.9	6.3486(2)	255.878(15)			

Figure 1 1 H NMR in d₆-DMSO of 1) MAPbI₃ (HI), 2) FAPbI₃ (HI) and 3) FA_{0.5}MA_{0.5}PbI₃ (IS).

Assignments:

$$\begin{split} & \textbf{MAPbl_3}\,^1 \textbf{H}\, \text{NMR}\, (300\,\,\text{MHz},\,\text{d6-DMSO})\,\delta\,2.36\,(3\textbf{H},\,\textbf{s},\,\text{CH}_3),\,7.46\,(3\textbf{H},\,\text{NH}_3).\\ & \textbf{FAPbl_3}\,^1 \textbf{H}\,\,\text{NMR}\, (300\,\,\text{MHz},\,\text{d6-DMSO})\,\delta\,7.83\,(1\textbf{H},\,\text{tt},\,\text{CH}),\,8.63\,(2\textbf{H},\,\text{d},\,\text{NH}_2),\,8.98\,(2\textbf{H},\,\textbf{s},\,\text{NH}_2).\\ & \textbf{FA_{0.5}}\textbf{MA_{0.5}}\textbf{Pbl_3}\,^1 \textbf{H}\,\,\text{NMR}\, (300\,\,\text{MHz},\,\text{d6-DMSO})\,\delta\,2.35\,(3\textbf{H},\,\textbf{s},\,\text{CH}_3),\,7.46\,(3\textbf{H},\,\text{NH}_3),\,7.83\,(1\textbf{H},\,\text{tt},\,\text{CH}),\\ & 8.63\,(2\textbf{H},\,\text{d},\,\text{NH}_2),\,8.97\,(2\textbf{H},\,\textbf{s},\,\text{NH}_2). \end{split}$$

Figure 2 Powder X-ray diffraction patterns of HI method MAPbI₃ (bottom) $FA_xMA_{1-x}PbI_3 0 \le x \le 1$ in x = 0.1 increments to the top.

Figure 3 $FA_{0.1}MA_{0.9}PbI_3$ (HI) PXD pattern (black lines), peaks used for unit cell refinement (grey lines) and calculated peak positions (green lines) from CELREF for *I4cm* a= 8.89 c= 12.61, *F23* a = 12.6 and *R3* a = 8.91.

Figure 4 Pawley fits to PXD patterns of $FA_{0.3}MA_{0.7}PbI_3$, cubic *Pm-3m*, a \approx 6.31 Å (top left) and tetragonal *I4cm* a \approx 8.90 Å, c \approx 12.59 Å (top right). $FA_{0.2}MA_{0.8}PbI_3$ *Pm-3m* (bottom left) and *I4cm* (bottom right). Both samples were synthesised by the HI method. Difference profiles are plotted in blue and calculated peak positions are designated by pink ticks.

Figure 5 Pawley fits to the room temperature PXD pattern of $FA_{0.1}MA_{0.9}PbI_3$ for *I4cm*, a \approx 8.91 Å c \approx 12.59 Å (top left), *F23* a \approx 12.6 Å (top right) and *Im-3* a \approx 12.6 Å (bottom left).