Supporting Information

Tables

Synthesis, characterization and adsorption capacity of magnetic carbon composites activated by CO₂: implication to the catalytic mechanisms of iron salts

Feng Qian,¹ Xiangdong Zhu,^{1,*} Yuchen Liu,¹ Shilai Hao,¹ Zhiyong Jason Ren,² Bin Gao,³

Ruilong Zong,⁴ Shicheng Zhang,^{1,*} Jianmin Chen¹

¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

² Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States

³ Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States

⁴ Department of Chemistry, Tsinghua University, Beijing 100084, China

* Corresponding author, Tel/fax: +86-21-65642297; E-mail: <u>zxdjewett@fudan.edu.cn</u> (Xiangdong Zhu), zhangsc@fudan.edu.cn (Shicheng Zhang).

РРСР	Wavelength (nm)	Mobile Phase	Volume Ratio
sulfamethoxazole (SMX)	265		67:33
sulfapyridine (SPY)	265	TEA (0.19/) as written	62:38
carbamazepine (CMZ)	285	1FA (0.1%) ". Water	80:20
sulfathiazole (STZ)	265		80:20
diclofenac sodium (DCF)	276	TFA (0.1%):	10:90
quinindium (QND)	245	methanol	62:38
bisphenol A (BPA)	280	mother all water	75:25
triclosan (TCS)	280	methanol: water	90:10

Table S1 Condition of mobile phase and wavelength of eight PPCPs in HPLC analysis

^{*a*} TFA: trifluoroacetic acid.

Samula	$S_{\rm BET}{}^a$	$S_{\rm mic}{}^{b}$	$S_{\rm mic}/S_{\rm BET}$	$V_{\rm mic}$ ^c	V_{t}^{d}	$V_{\rm mic}/V_{\rm t}$
Sample	(m^{2}/g)	(m ² /g)	(%)	(cm^3/g)	(cm^{3}/g)	(%)
MC-Cl-5	703.0	509	72.4	0.225	0.408	55.1
MC-Ox-5	393.0	331	84.2	0.165	0.296	55.7
MC-N-5	345.0	315	91.3	0.158	0.216	73.1
<i>MC-S-5</i>	247.0	201	81.4	0.105	0.144	72.9
MC-Ci-5	60.0	46	76.7	0.023	0.053	43.4

Table S2 Surface areas and porosities of MCs derived from different iron salt type (750°C of activation temperature and 2 h of hold time)

^{*a*} Brunauer-Emmett-Teller (BET) surface area measured using N₂ adsorption at P/P_0 of 0.04-0.3.

^b Micropore surface area calculated using the *t*-plot method.

^{*c*} Micropore volume calculated using the *t*-plot method.

^{*d*} Total pore volume determined at $P/P_0 = 0.99$.

Sample	Yield (%)	Ash (%)	Fe (%)	C (%)	N (%)	H (%)	Carbon Retention (%) ^b
MC-Cl-5	26.6	39.05	28.67	37.98	0.55	BDL ^a	15.76
MC-Ox-5	31.8	31.49	20.64	48.97	0.49	BDL	24.32
<i>MC-N-5</i>	34.1	29.84	24.32	44.48	0.64	BDL	23.68
MC-S-5	32.1	40.18	24.90	41.23	0.29	BDL	20.63
MC-Ci-5	24.1	95.79	51.78	4.17	0.04	BDL	1.57

Table S3 Yields, ash, Fe contents, and elemental compositions for MCs derived from different iron salt types (750°C of activation temperature and 2 h of hold time)

^{*a*} BDL: below detectable level.

^b Carbon retention (%) =
$$\frac{M_{sample} \times C_{sample}}{M_{hydrochar} \times C_{hydrochar}}$$

where M_{sample} is the final mass (g) of sample; $M_{hydrochar}$ is the mass (g) of hydrochar added; C_{sample} and $C_{hydrochar}$ are carbon contents (%) of sample and hydrochar, respectively. ($M_{hydrochar} = 3$ g; $C_{hydrochar} = 64.07$ %)

Sample	Component	HMF (KOe) ^a	IS (mm/s) ^b	QS (mm/s) ^c	$\Gamma/2$ (mm/s) ^d	Mole percentage (%)
MC On 5	F - O	459.63	0.54	0	0.27	43.1
<i>MC-0x-3</i>	Fe_3O_4	497.15	0.16	0.05	0.26	56.9
	<i>MC-N-5</i> Fe ₃ O ₄	461.43	0.69	0	0.21	41.9
MC-N-3		497.79	0.29	0.03	0.22	58.1
	α -Fe ₂ O ₃ (s) ^e	0	0.49	0.67	0.24	15.2
MC-S-5		462.86	0.88	0	0.26	50.2
	Fe ₃ O ₄	489.22	0.39	0.10	0.16	34.6
	E ₂ O	458.64	0.51	0	0.31	59.6
MC-CI-3	re ₃ O ₄	493.93	0.14	0.03	0.20	40.4

Table S4 Mössbauer parameters at room temperature of as-prepared MCs derived from differentiron salt types (750°C of activation temperature and 2 h of hold time)

^{*a*} HMF: hyperfine magnetic fields.

^b IS: isomer shift.

^c QS: quadrupole splitting.

^{*d*} $\Gamma/2$: half line width.

^{*e*} s: superparamagnetic.

Sample	Fe Leaching Concentration (mg/L)	Fe Leaching Percentage (%)
MC-Cl-5	4.13 ± 0.06	0.72 ± 0.01
MC-Ox-5	1.92 ± 0.03	0.47 ± 0.01
<i>MC-N-5</i>	2.97 ± 0.01	0.61 ± 0.01
<i>MC-S-5</i>	32.32 ± 0.38	6.49 ± 0.08
MC-Ci-5	2.82 ± 0.02	0.27 ± 0.01

Table S5 Fe content analyses during acid leaching experiments at pH 2 for MCs activated at different iron salt types (750°C of activation temperature and 2 h of hold time)

Sample	Yield (%)	Ash (%)	Fe (%)	C (%)	N (%)	H (%)	Carbon Retention (%) ^b
MC-Cl-0	36.9	10.13	-	71.43	1.04	BDL	41.09
MC-Cl-1	17.0	21.64	8.14	53.66	0.86	BDL	14.24
MC-Cl-2	25.2	22.39	11.43	54.04	0.73	BDL	21.21
MC-Cl-5	25.7	51.23	29.12	35.54	0.53	BDL	14.23
MC-Cl-10	31.6	80.61	45.51	19.07	0.32	BDL	9.41
MC-Cl-20	35.6	93.43	59.70	0.15	BDL ^a	BDL	0.08

Table S6 Yields, ash, Fe contents, and elemental compositions for the MCs derived from different FeCl₃ loading content (750°C of activation temperature and 2 h of hold time)

^{*a*} BDL: below detectable level.

^b Carbon retention (%) = $\frac{M_{sample} \times C_{sample}}{M_{hydrochar} \times C_{hydrochar}}$

where M_{sample} is the final mass (g) of sample; $M_{hydrochar}$ is the mass (g) of hydrochar added; C_{sample} and $C_{hydrochar}$ are carbon contents (%) of sample and hydrochar, respectively. ($M_{hydrochar} = 3$ g; $C_{hydrochar} = 64.07$ %)

Samula	$S_{\rm BET}{}^a$	$S_{\min}{}^{b}$	$S_{\rm mic}/S_{\rm BET}$	$V_{\rm mic}$ ^c	V_t^{d}	$V_{\rm mic}/V_{\rm t}$
Sample	(m^{2}/g)	(m^{2}/g)	(%)	(cm^{3}/g)	(cm^3/g)	(%)
MC-Cl-0	539.9	502	93.0	0.224	0.253	88.5
MC-Cl-1	908.0	806	88.8	0.402	0.547	73.5
MC-Cl-2	648.0	560	86.4	0.281	0.408	68.9
MC-Cl-5	733.0	626	85.4	0.312	0.463	67.4
MC-Cl-10	385.0	280	72.7	0.137	0.286	47.9
MC-Cl-20	1.4	0	0.0	0.001	0.007	10.0

Table S7 Surface areas and porosities of MCs derived from different FeCl₃ loading content (750°C of activation temperature and 2 h of hold time)

^{*a*} Brunauer-Emmett-Teller (BET) surface area measured using N₂ adsorption at P/P_0 of 0.04-0.3.

^b Micropore surface area calculated using the *t*-plot method.

^{*c*} Micropore volume calculated using the *t*-plot method.

^{*d*} Total pore volume determined at $P/P_0 = 0.99$.

Sample	Component	HMF (KOe) ^{<i>a</i>}	IS (mm/s) ^b	QS (mm/s) ^c	$\Gamma/2$ (mm/s) ^d	Mole percentage (%)
	α -Fe ₂ O ₃ (s) ^e	0	0.42	0.07	0.52	34.5
MC-Cl-1		457.19	0.71	0.04	0.39	44.1
	Fe ₃ O ₄	491.18	0.27	0.02	0.18	21.4
	α -Fe ₂ O ₃ (s)	0	0.37	0.51	0.27	19.4
MC-Cl-2	Fe ₃ O ₄	457.23	0.79	0.02	0.25	54.3
		488.38	0.41	0.05	0.14	26.3
MC-Cl-5	Fe ₃ O ₄	458.14	0.68	0	0.28	70.2
		485.87	0.26	0.07	0.15	29.8
MC-Cl-10	F O	460.90	0.83	0	0.24	69.2
	Fe ₃ O ₄	485.55	0.39	0.07	0.13	30.8
MC-Cl-20		465.36	0.60	0	0.19	56.9
	Fe ₃ O ₄	489.45	0.12	0.08	0.17	43.1

Table S8 Mössbauer parameters at room temperature of as-prepared MCs derived from different FeCl₃ loadings (750°C of activation temperature and 2 h of hold time)

^{*a*} HMF: hyperfine magnetic fields.

^b IS: isomer shift.

^c QS: quadrupole splitting.

 ${}^{d}\Gamma/2$: half line width.

^{*e*} s: superparamagnetic.

Sample	Fe Leaching Concentration (mg/L)	Fe Leaching Percentage (%)
MC-Cl-0	-	-
MC-Cl-1	3.96 ± 0.02	2.44 ± 0.01
MC-Cl-2	3.85 ± 0.14	1.68 ± 0.06
MC-Cl-5	4.34 ± 0.02	0.74 ± 0.01
MC-Cl-10	3.84 ± 0.04	0.42 ± 0.01
MC-Cl-20	3.92 ± 0.50	0.28 ± 0.04

Table S9 Fe content analyses during acid leaching experiments at pH 2 for MCs activated at different FeCl₃ loadings (750°C of activation temperature and 2 h of hold time)

РРСР	$q_m (\mathrm{mmol/g})^a$	LogK _{OW} ^b	Melting Points (°C)
sulfamethoxazole (SMX)	0.82	0.89	167
sulfapyridine (SPY)	0.91	0.35	191
carbamazepine (CMZ)	0.72	2.45	190
sulfathiazole (STZ)	0.91	0.05	202
diclofenac sodium (DCF)	0.57	3.91	288
quinindium (QND)	0.65	2.88	174
bisphenol A (BPA)	0.86	3.32	150
triclosan (TCS)	1.28	4.76	55

Table S10 Physicochemical properties of PPCPs and q_m values for PPCP adsorption onto the *MC-Cl-5* sample.

 $^{a} q_{m}$: the maximum adsorption capacity in Langmuir adsorption model.

 ${}^{b}K_{OW}$: octanol-water partition coefficient.