Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information

Hierarchically structured C@SnO₂@C nanofiber bundles with high stability and

effective ambipolar diffusion kinetics for high-performance Li-ion batteries

Xiaoling Wang,^a Jingze Li,^a Zeui Chen,^b Lijie Lei,^b Xuepin Liao,^a Xin Huang^{a,b*} and Bi

Shi^b

^a Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China. Email: xhuangscu@163.com

^b National Engineering Laboratory for Clear Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China

*Correspondence - xhuangscu@163.com

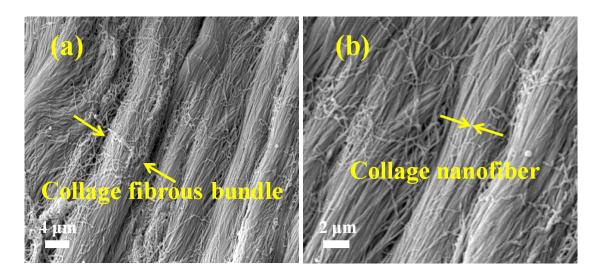
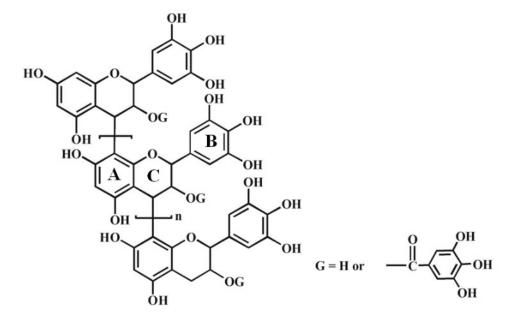
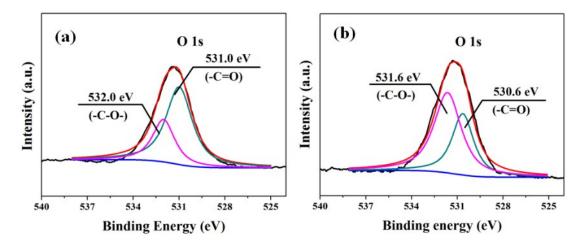
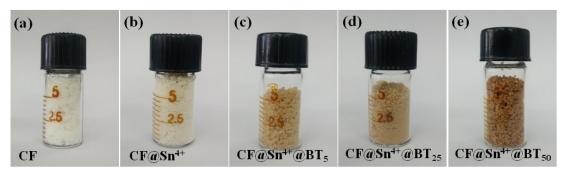
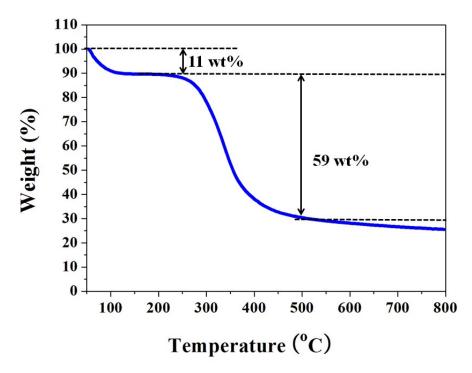
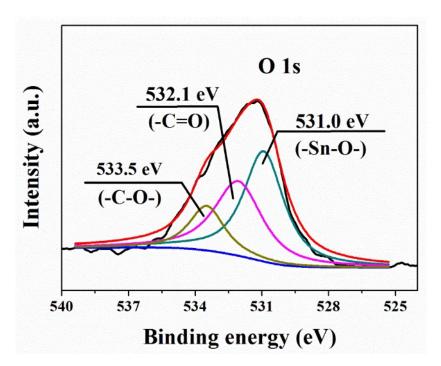




Fig. S1. SEM images of CF at different magnifications.

Fig. S2. Molecular structure of bayberry tannin (BT). BT contains abundant hydrophilic hydroxyl groups and hydrophobic aromatic backbone, which can be coated onto CF through hydrogen-bonding and hydrophobic interactions.¹⁻³

Fig. S3. The O 1s X-ray photoelectron spectra (XPS) of (a) CF and (b) CF@Sn⁴⁺. In Fig. S3a, the peaks at 532.0 eV and 531.0 eV are attributed to -C-O and -C=O groups of CF.⁴ After CF was reacted with Sn⁴⁺ (Fig. S3b), the peak intensity of -C-O is substantially increased along with significant decreased peak intensity of -C=O. These changes suggest that CF should be mainly chelated with Sn⁴⁺ via its -COOH groups.

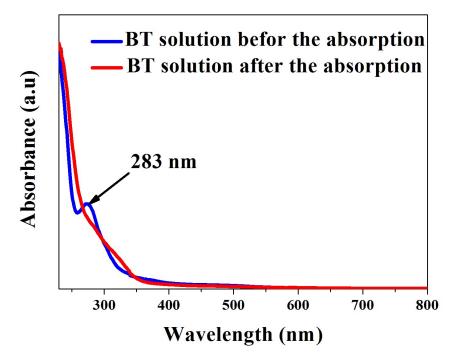

Fig. S4. Digital images of (a) CF, (b) CF@Sn⁴⁺, (c) CF@Sn⁴⁺@BT₅, (d) CF@Sn⁴⁺@BT₂₅ and (e) CF@Sn⁴⁺@BT₅₀.

Fig. S5. Thermogravimetry analysis (TGA) of CF in nitrogen atmosphere with a heating rate of 10 $^{\circ}$ C min⁻¹. The TGA curve shows two steps of weight loss below 500 $^{\circ}$ C. The first step of weight loss below 150 $^{\circ}$ C is associated with the loss of adsorbed water on CF, and the second step of weight loss is due to the decomposition of collagen protein in the temperature range of 250-500 $^{\circ}$ C.

Fig. S6. The O 1s XPS of C@SnO₂@C. The spectra consist of three peaks at 533.5 eV, 532.1 eV and 530.9 eV, which are attributed to -C-O, -C=O and -Sn-O-, respectively. The peak of -Sn-O- is ascribed to the existing of SnO₂, while the presence of -C-O and -C=O suggests that carboxyl group and hydroxyl group still exist in C@SnO₂@C, which are responsible for the stabilization of SnO₂ nanoparticles on C@SnO₂@C.

Fig. S7. UV-vis absorption spectra of BT solution before and after the adsorption by SnO_2 nanofiber bundle. Before the adsorption, BT showed a major peak around 283 nm, which disappeared after the adsorption of SnO_2 , confirming the successful coating of BT onto SnO_2 nanofiber bundle.

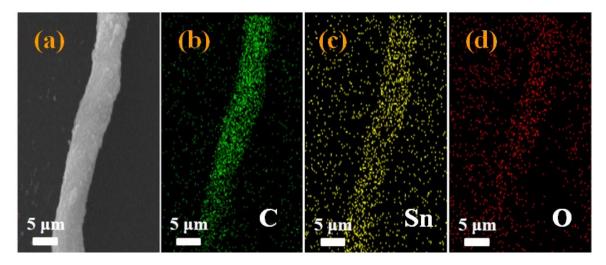


Fig. S8. SEM-EDS mapping images of C, Sn, O in C@SnO₂@C.

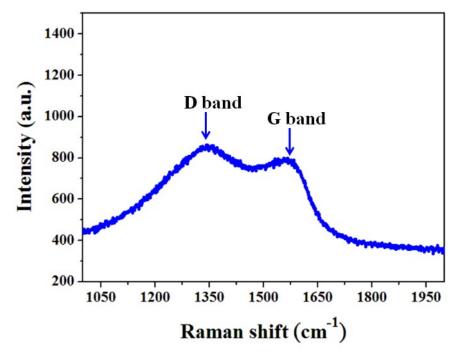
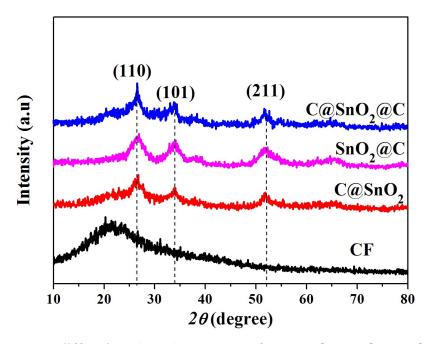



Fig. S9. Raman spectrum of C@SnO₂@C.

Fig. S10. X-ray diffraction (XRD) patterns of CF, C@SnO₂@C, C@SnO₂ and SnO₂@C. XRD pattern of CF shows one broad characteristic peak at 23°, which is attributed to the amorphous polymer phase of CF. XRD patterns of C@SnO₂@C, C@SnO₂ and SnO₂@C exhibit typical (110), (101) and (211) crystalline plane diffraction peaks of face-centered-cubic (*fcc*) SnO₂ at 26.6°, 33.8° and 52.3°, respectively.⁵

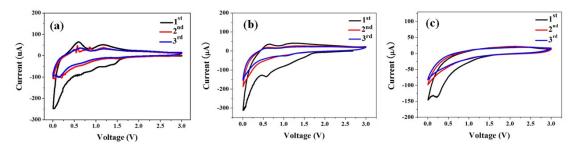


Fig. S11. Initial three cyclic voltammograms (CV) of C@SnO₂@C (a), C@SnO₂ (b) and SnO₂@C (c) at a scan rate of 0.05 mV s⁻¹.

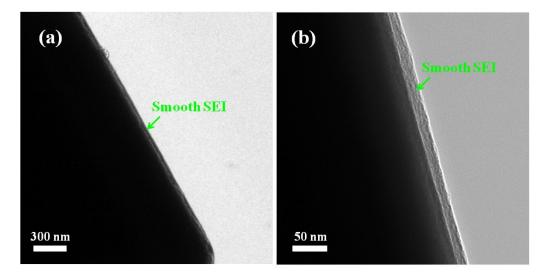


Fig. S12. TEM images of C@SnO₂@C after the rate tests.

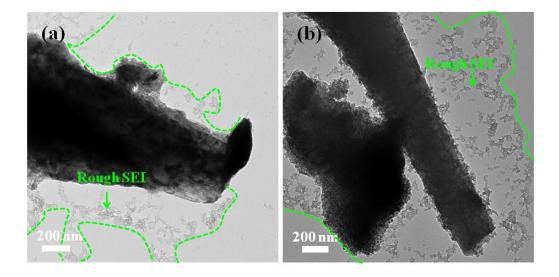
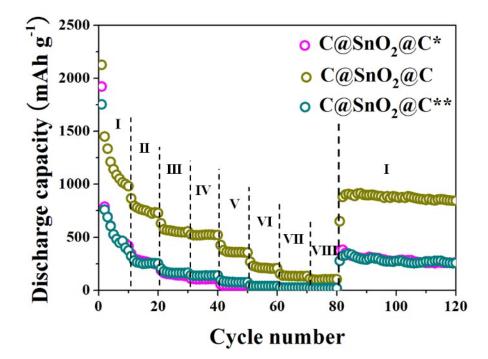



Fig. S13. TEM images of C@SnO₂ after the rate tests.

Fig. S14. Rate capabilities of C@SnO₂@C*, C@SnO₂@C and C@SnO₂@C**. The current density at each stage: $I = 0.2 \text{ A g}^{-1}$, $II = 0.4 \text{ A g}^{-1}$, $III = 0.8 \text{ A g}^{-1}$, $IV = 1.0 \text{ A g}^{-1}$, $V = 2.0 \text{ A g}^{-1}$, $VI = 4.0 \text{ A g}^{-1}$, $VII = 6.0 \text{ A g}^{-1}$, $VIII = 8.0 \text{ A g}^{-1}$.

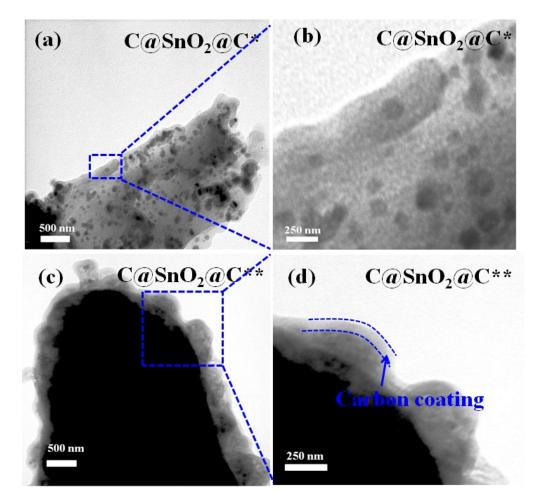
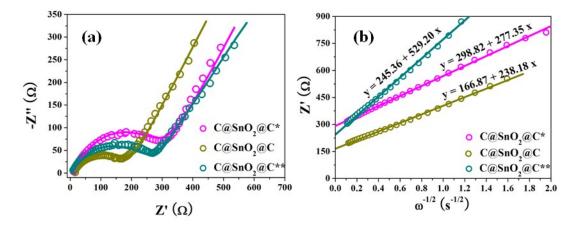



Fig. S15. TEM images of $(a, b) C@SnO_2@C^*$ and $(c, d) C@SnO_2@C^{**}$.

Fig. S16. (a) EIS of C@SnO₂@C*, C@SnO₂@C and C@SnO₂@C** after the rate tests and (b) the corresponding relationship between Z' and $\omega^{-1/2}$ in the low-frequency region.

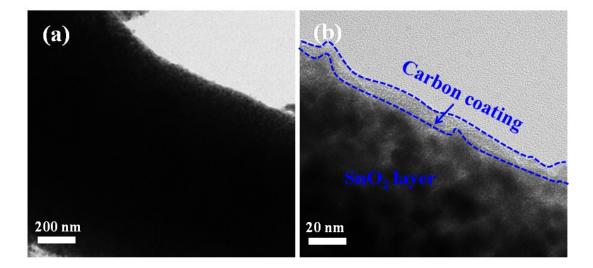


Fig. S17. TEM images of $SnO_2@C$ at different magnifications.

C@SnO2@C* and C@SnO2@C** after the rate tests using the equivalent electrical
circuit model. $R_{ct}(\Omega)$ $Z_w(\Omega)$

Table S1. EIS parameters obtained by fitting the Nyquist plots of C@SnO2@C,

Sample	$R_{ct}(\Omega)$	$Z_{ m w}\left(\Omega ight)$
C@SnO ₂ @C	167.2	150.6
C@SnO ₂ @C *	309.4	289.6
C@SnO ₂ @C**	260.1	486.3

_			•	
Sample	Discharge capacity (mAh g ⁻¹)	Current density (mA g ⁻¹)	Cycle number	Reference
C@SnO ₂ @C nanofiber bundle	500	500	100	This work
SnO ₂ @carbon hollow nanospheres	460	500	100	6
CNFs@SnO ₂ core-shell structures	460	200	50	7
Mesoporous SnO ₂ overlaying MWCNTs hybrid composites	344.5	33.3	50	8
SnO ₂ @carbon nanofibers	420	100	100	9
CNTs/mesoporous SnO ₂	464	626	40	10
SnO ₂ /carbon hollow spheres	473	100	50	11
Carbon-coated SnO ₂ nanocolloids	440	300	100	12

Table S2. Discharge capacity of various carbon/SnO $_2$ nanocomposites.

Table S3. EIS parameters obtained by fitting the Nyquist plots of C@SnO₂@C, C@SnO₂ and SnO₂@C before and after cycled at 0.5 A g^{-1} and 1.0 A g^{-1} using the equivalent electrical circuit model.

	C@SnO ₂ @C	C@SnO ₂	SnO ₂ @C
$R_{ct}(\Omega)$	201.3 ^a (168.4 ^b /27.2 ^c)	108.1 (112.3/25.0)	79.1 (103.6/70.3)
$Z_{w}\left(\Omega ight)$	180.1ª (143.6 ^b /94.2 ^c)	158.2 (179.7/218.5)	350.6 (278.7/193.0)

^a Parameters obtained by fitting the Nyquist plots of electrode materials before the rate tests.

^b Parameters obtained by fitting the Nyquist plots of electrode materials after cycled at 0.5 A g⁻¹.

^c Parameters obtained by fitting the Nyquist plots of electrode materials after cycled at 1.0 A g⁻¹.

References

- 1. T. Okuda and H. Ito, *Molecules*, 2011, 16, 2191-2217.
- 2. X. Huang, H. Wu, X. P. Liao and B. Shi, Green Chem., 2010, 12, 395-399.
- 3. I. Mueller-Harvey, Anim. Feed Sci. Technol., 2001, 91, 3-20.
- 4. N. A. Evans, B. Miligan and K. C. Montgomery, J. Am. Leather Chem. Assoc., 1987, 82, 86-95.
- 5. J. X. Wang, W. Li, F. Wang, Y. Y. Xia, A. M. Asiriand and D. Y. Zhao, *Nanoscale*, 2014, **6**, 3217-3222.
- 6. X. W. Lou, C. M. Li and L. A. Archer, Adv. Mater., 2009, 21, 2536-2539.
- L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu and X. W. Luo, *Adv. Mater.*, 2013, 25, 2589-2593.
- 8. Z. H. Wen, Q. Wang, Q. Zhang and J. H. Li, *Adv. Funct. Mater.*, 2007, **17**, 2772-2778.
- Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, P. Zhang, G. N. Chen and H. K. Liu, *J. Mater. Res.*, 2010, 25, 1516-1524.
- 10. G. Chen, Z. Y. Wang and D. G. Xia, Chem. Mater., 2008, 20, 6951-6956.
- 11. X. W. Lou, D. Deng, J. Y. Lee and L. A. Archer, *Chem. Mater.*, 2008, **20**, 6562-6566.
- X. W. Lou, J. S. Chen, P. Chen and L. A. Archer, *Chem. Mater.*, 2009, 21, 2868-2874.