Electronic Supplementary Information

Commercial Dacron cloth supported Cu(OH)₂ nanobelt arrays for wearable supercapacitors

Shuijin Lei^{ab}, Yan Liu^b, Linfeng Fei^b, Ruobing Song^b, Wei Lu^b, Longlong Shu^a, Chee

Leung Mak*^b, Yu Wang*^a and Haitao Huang*^b

^a School of Materials Science and Engineering, Nanchang University, Jiangxi 330031,

China

^b Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong

SAR, China

^{*} Corresponding authors.

Email addresses: aphhuang@polyu.edu.hk (H. T. Huang), wangyu@ncu.edu.cn (Y. Wang), apaclmak@polyu.edu.hk (C. L. Mak).

Fig. S1 Photograph of a large piece of copper-plated Dacron cloth.

Fig. S2 Nyquist plot of the $Cu(OH)_2/Cu/Dacron positive electrode$. Inset: enlarged part of the plot.

Fig. S3 Nyquist plot of the flexible all-solid-state asymmetric supercapacitor device. Inset: enlarged part of the plot.

Fig. S4 Capacitance retention as a function of the rolling and cycling numbers.