Electronic Supplementary Information

Molecularly-Designed, Dual-Doped Mesoporous Carbon/SWCNT Nanoshields for Lithium Battery Electrode Materials

Ye-Ri Jang,^{†a} Ju-Myung Kim,^{†a} Jung-Han Lee,^a Sung-Ju Cho,^a Guntae Kim,^a Young-Wan

Ju,^a Sun-Hwa Yeon,^{*b} JongTae Yoo,^{*a} and Sang-Young Lee^{*a}

^aDepartment of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea ^bEnergy Storage Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea

[†]These authors contributed equally.

*Correspondence and requests for materials should be addressed to

S.-H. Yeon (email: ys93@kier.re.kr), J. Yoo (email: jongtaeyoo@unist.ac.kr), and S.-Y. Lee (email: syleek@unist.ac.kr)

Figure S1. ¹H-NMR spectrum of PVIm[Br].

Figure S2. FT-IR spectra of PVIm[Br] and PVIm[DS], along with their chemical structures.

Figure S3. XPS S 2p spectra of PVIm[DS]: (A) Before carbonization. (B) After carbonization (at 600 °C for 2 h in Ar atmosphere).

Figure S4. (Bottom) HRTEM image of PVIm[DS]-derived model carbon film and (Top) its intensity profile.

Figure S5. SEM images of (A) pristine OLO and (B) OLO@MC particles.

Figure S6. N_2 adsorption-desorption isotherms of pristine OLO, OLO@MC, and OLO@PVIm[Br]-derived carbon.

Figure S7. Electrical conductivity of OLO@MC cathodes as a function of initial concentration (varying from 0.1 to 2.0 mg mL⁻¹) of PVIm[DS] coating solution.

Figure S8. TGA profiles of OLO@MC as a function of initial concentration (varying from 0.1 to 2.0 mg mL⁻¹) of PVIm[DS] coating solution.

Figure S9. SEM and HRTEM (inset) images of OLO@MC prepared from PVIm[DS] coating solution with initial concentration of 2.0 mg mL⁻¹. Yellow arrows indicate the thick and irregularly-deposited MC shell on the OLO surface.

Figure S10. XRD patterns of pristine OLO and OLO@SMC particles.

Figure S11. Charge/discharge profiles (for 1st and 50th cycles) of pristine OLO, OLO@MC, and OLO@SMC cathodes, wherein the cells were cycled at charge/discharge current density of 3.0 C/3.0 C under voltage range of 2.0–4.7 V.

Publication /Chemical structure of OLO	Composite ratio (%)			Mass
	Active material	Conductive agent	Binder	(mg cm ⁻²)
This work /0.49Li ₂ MnO ₃ ·0.51LiNi _{0.37} Co _{0.24} Mn _{0.39} O ₂	92	4	4	~14
<i>Adv. Mater.</i> 2015 , <i>27</i> , 3915. /Li[Li _{0.2} Mn _{0.568} Ni _{0.2} X _{0.032}]O ₂ (X = Si, Sn, and Mn)	80	10	10	2 - 3
<i>Adv. Energy Mater.</i> 2015 , <i>5</i> , 1500274. /Li _{1.17} Ni _{0.17} Co _{0.17} Mn _{0.5} O ₂ (0.4Li ₂ MnO ₃ ·0.6Li Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂)	80	10	10	4.5
Adv. Energy Mater. 2013, 3, 1299. /Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂	80	10	10	2.9
Nano Lett. 2014 , <i>14</i> , 5965. /hydrazine treated 0.5Li ₂ MnO ₃ - 0.5LiNi _{0.5} Mn _{0.5} O ₂	90	5	5	6.2
J. Mater. Chem. A 2015, 3, 17113. /Li[Li _{0.2} Co _{0.13} Ni _{0.13} Mn _{0.54}]O ₂	80	10	10	2
<i>J. Mater. Chem. A</i> 2015 , <i>3</i> , 13933. /0.5Li ₂ MnO ₃ ·0.5LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	85	10	5	3
<i>J. Mater. Chem. A</i> 2015 , <i>3</i> , 17627. /Li(Li _{0.17} Ni _{0.25} Mn _{0.58})O ₂	75	15	10	4.97
ACS Appl. Mater. Interfaces 2015, 7, 8319. /Li _{1.17} Ni _{0.17} Mn _{0.5} Co _{0.17} O ₂	80	10	10	4.97
ACS Appl. Mater. Interfaces 2014, 6, 21711. /Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂	80	10	10	3

Table S1. Comparison of composite ratio and areal mass loading used in this study with previously reported results.