Supporting Information

Bismuth oxide nanosheets coated electrospun carbon nanofibers film: a free-standing negative electrode for flexible asymmetric supercapacitors

Lu Li^{a, b}, Xitian Zhang^{*, a}, Zhiguo Zhang^b, Mingyi Zhang^a, Lujia Cong^a, Yu Pan^a, Shuangyan Lin^a.

^a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

^b Condensed mater science and technology institute, Harbin institute of technology, Harbin 150001, China

*Corresponding author: E-mail: xtzhangzhang@163.com (X. T. Zhang)

Calculation methods:

1. Single Electrode

The areal capacitance (C_a) of the electrode could be calculated from their CV curves and galvanostatic charge/discharge curves by the following equations.

$$C_a = \frac{\int IdV}{A \cdot v \cdot \Delta V}$$

Here C_a is areal capacitance (mF cm⁻¹), I is the response current (A), V is the potential *vs*. Reference electrode, A is electrode area (cm²), v is the scan rate (mV s⁻¹) and ΔV is the potential window (V).

$$C_a = \frac{i \cdot \Delta t}{\Delta V}$$

Here C_a is a real capacitance (mF cm⁻¹), i is the current density (mA cm⁻¹), Δt is the discharging time (s) and ΔV is the potential window (V).

2. ASC Device

The areal capacitance (C_a) , specific capacitance (C_s) , energy density (E) and power density (P) could be calculated by the following equations.

$$C_{a} = \frac{i \cdot \Delta t}{\Delta V}$$
$$C_{s} = \frac{C_{a}}{m}$$
$$E = \frac{1}{2}C \cdot (\Delta V)^{2}$$
$$P = \frac{E}{\Delta t}$$

Here C_a is a real capacitance (mF cm⁻¹), i is the current density (mA cm⁻¹), Δt is the discharging time (s), ΔV is the potential window (V), m is the total mass of active materials grown on the two electrodes per unit area.

Sample	Time	Temperatur	Precursors			
	(h)	e (°C)	Ethylene glycol (mL)	Ethanol (mL)	Bi(NO ₃) ₃ • 5H ₂ O (g)	ESCNF paper (cm ²)
Bi ₂ O ₃ /ESCNF-0.5	6	160	6	12	0.243	2.5×3
Bi ₂ O ₃ /ESCNF-1	6	160	6	12	0.485	2.5×3
Bi ₂ O ₃ /ESCNF-2	6	160	6	12	0.97	2.5×3

Table S1. Experimental conditions and chemical component of the prepared samples.

 Table S2. Electrical conductivity of the aqueous electrolytes used in electrochemical experiments.

Conductivity (mS cm ⁻¹)
191
141
90
87

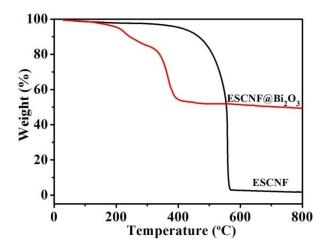


Fig. S1. TGA curves of bare ESCNF substrate and Bi_2O_3 nanosheets grown on ESCNF substrate.

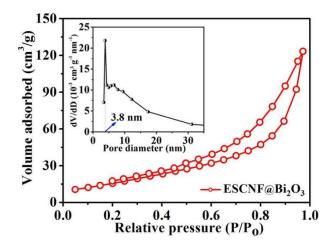


Fig. S2. Nitrogen adsorption and desorption isotherms of ESCNF@ Bi_2O_3 -1. Inset is the corresponding pore size distribution. The specific surface area is determined to be about 75.3 m² g⁻¹ by Brunauer-Emmett-Teller (BET) analysis.

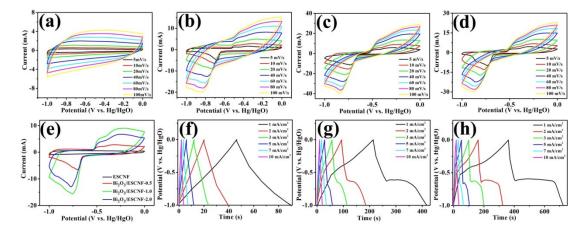


Fig. S3. CV curves at various scan rates in 1 M KOH of (a) ESCNF, (b) ESCNF@Bi₂O₃-0.5, (c) ESCNF@Bi₂O₃-1, (d) ESCNF@Bi₂O₃-2, (e) CV curves of samples at a scan rate of 10 mV s⁻¹. GCD curves at different current densities in 1 M KOH of (f) ESCNF, (g) ESCNF@Bi₂O₃-0.5, (h) ESCNF@Bi₂O₃-2.

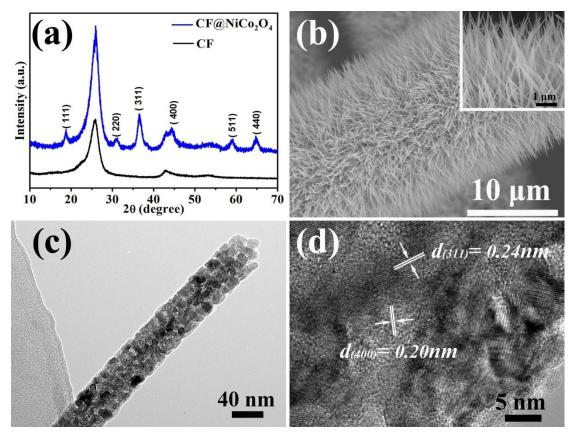


Fig. S4. (a) XRD patterns of the CF@NiCo₂O₄ and CF substrate. (b) The SEM images of the CF@NiCo₂O₄. (c) TEM and (d) HRTEM image of the CF@NiCo₂O₄.

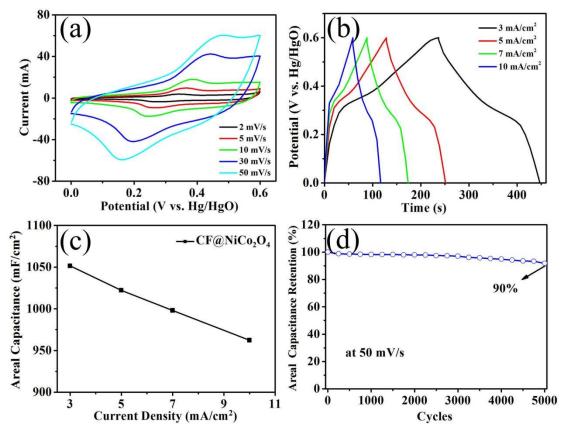


Fig. S5. (a) CV curves of CF@NiCo₂O₄ composite electrodes at different scan rates.
(b) GCD curves of CF@NiCo₂O₄ composite electrodes at different current densities.
(c) areal capacitance calculated from GCD curves. (d) cycling stability at a scan rate of 50 mV s⁻¹.

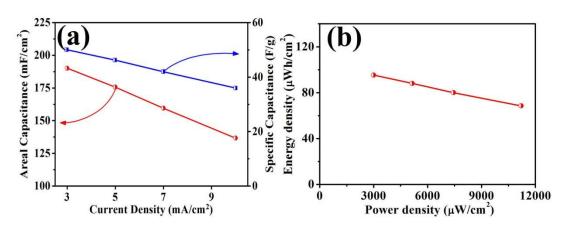


Fig. S6. (a) Areal and specific capacitance as a function of current density. (b) Areal energy and power of the ASC.