## **Supporting Information**

Facile synthesis of hierarchical CoMoO<sub>4</sub>@NiMoO<sub>4</sub> core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors

Ziqing Zhang,<sup>a</sup> Hongdan Zhang,<sup>a</sup> Xinyang Zhang,<sup>a</sup> Deyang Yu, <sup>a</sup> Ying Ji,<sup>a</sup> Qiushi Sun,<sup>a</sup> Ying Wang,<sup>a</sup> and Xiaoyang Liu<sup>a</sup> \*

a State key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Tel/Fax: +86-0431-85168316. E-mail: liuxy@jlu.edu.cn

Table S1 The comparison results of electrochemical performance for  $CoMoO_4$  and  $CoMoO_4$ @NiMoO\_4 composite electrodes.

| Samples            | Mass loading (mg cm <sup>-2</sup> ) | Ca (F cm <sup>-2</sup> ) | Cs (F g <sup>-1</sup> ) | Rate capability (%) |
|--------------------|-------------------------------------|--------------------------|-------------------------|---------------------|
| CoMoO <sub>4</sub> | 1.27                                | 1.16                     | 913.4                   | 35.7                |
| CMNM-2             | 1.68                                | 1.74                     | 1035.7                  | 44.3                |
| CMNM-4             | 2.01                                | 3.30                     | 1639.8                  | 66.7                |
| CMNM-6             | 2.45                                | 2.61                     | 1065.3                  | 50.4                |

Table S2 The comparison results of electrochemical performance for CMNM-4 and other similar core-shell structure composite electrodes.

| Electrode materials                                                                      | Specific capacitance                               | Ref.      |
|------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|
| CoMoO <sub>4</sub> @NiMoO <sub>4</sub> core/shell nanosheet arrays                       | 1639.8 F g <sup>-1</sup> at 10 mA cm <sup>-2</sup> | This work |
| Co <sub>3</sub> O <sub>4</sub> @CoMoO <sub>4</sub> core/shell nanowire arrays            | 1040 F g <sup>-1</sup> at 1 A g <sup>-1</sup>      | 32        |
| NiCo <sub>2</sub> O <sub>4</sub> nanowire@CoMoO <sub>4</sub> nanoplate core/shell arrays | 1347.3 F g <sup>-1</sup> at 10 mA cm <sup>-2</sup> | 33        |
| $NiCo_2O_4@Co_xNi_{1-x}(OH)_2$ core/shell nanosheet arrays                               | 1045 F g <sup>-1</sup> at 1 A g <sup>-1</sup>      | 34        |



Fig. S1. XPS spectra of (a) survey spectrum, (b) Co 2p, (c) Mo 3d and (d) Ni 2p for CoMoO<sub>4</sub>@NiMoO<sub>4</sub> nanosheet arrays.

A survey scan (Fig. S1a) showed the presence of Co, Mo, Ni, O elements in the composite. The Co 2p core level spectrum (Fig. S1b) showed two main peaks at 782.5 and 798.3 eV, corresponding to the Co  $2p_{3/2}$  and Co  $2p_{1/2}$  energy level respectively, which is a signature of Co<sup>2+</sup>. Fig. S1c of Mo 3d region exhibited two peaks with binding energies of 232.6 and 235.8 eV, which can be assigned to the Mo  $3d_{5/2}$  and Mo  $3d_{3/2}$  energy level, respectively. The binding energy separation of Mo 3d is 3.2 eV, which is best ascribed to a Mo<sup>6+</sup> oxidation state. As shown in Fig. S1d, the binding energy peak at 856.2 eV and its satellite peak at 862.4 eV corresponded to Ni  $2p_{3/2}$  level, whereas the binding energy peaks at 874 eV and its satellite peak at 880.2 eV corresponded to the Ni  $2p_{1/2}$  level. The main binding energy peaks of Ni  $2p_{3/2}$  and Ni  $2p_{1/2}$  are separated by 17.8 eV, which is a signature of the Ni<sup>2+</sup> oxidation state.



Fig. S2.  $N_2$  adsorption-desorption isotherms at 77 K of (a) CoMoO<sub>4</sub> and (b) CoMoO<sub>4</sub>@NiMoO<sub>4</sub> nanosheet arrays.



Fig. S3. EDS spectra of (a) CoMoO<sub>4</sub> and (b) CoMoO<sub>4</sub>@NiMoO<sub>4</sub> nanosheet arrays.



Fig. S4. EDS spectra of CMNM-2, CMNM-4 and CMNM-6.

We have obtained the Co/Ni atomic ratios of the CMNM-2, CMNM-4 and CMNM-6 are about 1.83:1, 1:1 and 1:1.28, respectively.



Fig. S5. Nyquist plots of CoMoO<sub>4</sub>, NiMoO<sub>4</sub> and CMNM-4 nanosheet arrays.



Fig. S6. CV curves of (a) CoMoO<sub>4</sub>, (c) CMNM-2, (e) CMNM-6 electrode at various scan rates ranging from 5 to 80 mV s<sup>-1</sup>; CD curves of (b) CoMoO<sub>4</sub>, (d) CMNM-2, (f) CMNM-6 electrode at different current densities.



Fig. S7 Specific capacitances of CoMoO<sub>4</sub>@NiMoO<sub>4</sub> composite electrodes at different Co/Ni atomic ratios.

The relationship between Co/Ni atomic ratios and electrochemical properties of composite electrodes was shown in Fig. S7. It was noted that the capacitances of coreshell hybrid materials increased with the decreasing Co/Ni atomic ratio at first, and then reached the highest capacitance (1639.8 F g<sup>-1</sup> at 10 mA cm<sup>-2</sup>) at the atomic ratio 1:1. The capacitance began to fall as the atomic ratio continued to decline. So the Co/Ni ratio has influence on the electrochemical properties, but the influence of density and size of NiMoO<sub>4</sub> nanosheets was greater.