Supporting Information for

Enhancing the Photovoltaic Performance of Planar Heterojunction Perovskite Solar Cells by Doping the Perovskite Layer with Alkali Metals

Jingjing Chang,^{a,b*} Zhenhua Lin,^a Hai Zhu,^c Furkan Halis Isikgor,^b Qing-Hua Xu,^c Chunfu Zhang,^a Yue Hao,^a Jianyong Ouyang^{b*}

^aState Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, China 710071. *E-mail:jjingchang@xidian.edu.cn.

^bDepartment of Materials Science & Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574. *E-mail: mseoj@nus.edu.sg.

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

Figure S1. *J-V* characteristics with different scan rates and steady-state PCE at maximum power point as a function of time of the PSCs with the perovskite layers of no doping (a, b) and doping of 0.5 mol% K^+ (c, d), 0.25 mol% Na^+ (e, f).

Figure S2. J_{ph} - V_{eff} curves for PSCs with MAPbI₃ films undoped and doped with 0.5 mol% K⁺.

Figure S3. Electrochemical impedance spectroscopy (EIS) analysis. Recombination resistance (R_{rec}) was plotted against applied voltage, and determined by EIS measurements in the dark (inset: the simplified circuit model).

Figure S4. XRD patterns of the MAPbI₃ films with different Na⁺ doping degrees.

Figure S5. The SEM element mapping of pure perovskite thin film.

Figure S6. The SEM element mapping of 0.5% KI doped perovskite thin film.

Figure S7. The SEM element mapping of 0.25% NaI doped perovskite thin film.

Figure S8. XPS spectra of K2p and Na1s peak for pure and KI (or NaI) doped thin films.