Electronic Supplementary Material

Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage

Yanfeng Dong, Shaohong Liu, Yang Liu, Yongchao Tang, Ting Yang, Xuzhen Wang, Zhiyu Wang*, Zongbin Zhao* and Jieshan Qiu*

Fig.S1 Photos of $Fe(NO_3)_3$ (0.05 g) and GO (0.01 g) mixed solution (20 mL) with (a) or without (b) PVP (0.01 g).

Fig.S2 SEM (a), TEM (b) images and XRD pattern (c) of Fe_2O_3/G .

Fig.S3 XRD patterns of GO and Fe(NO₃)₃@PVP@GO.

Fig.S4 (a) Low magnification SEM image of $Fe(NO_3)_3$ @PVP@GO, suggesting the dense and bulk particles. (b) SEM image of a bulk $Fe(NO_3)_3$ @PVP@GO particle, indicating the thick and multilayered nanostructures.

Fig.S5 Thermogravimetric analysis of GO, PVP, iron nitrate and Fe(NO₃)₃@PVP@GO in nitrogen atmosphere at 10 °C min⁻¹ heating rate.

Fig.S6 Photo image (left) of 500 mg Fe(NO₃)₃@PVP@GO powder in a glass container, after carbonation process, the volume of the resulting 80 mg FeO_x@C@G exceeds that of Fe(NO₃)₃@PVP@GO (right).

Fig.S7 HRTEM images of h-Fe₂O₃@C@G with 84 wt.% Fe₂O₃(a), 78 wt.% Fe₂O₃(b) and 70 wt.% Fe₂O₃(c).

Fig.S8 (a) Elemental analysis of h-Fe₂O₃@C@G hybrids (with 0.3 g PVP dose), in which element C, N, Fe and O uniformly disperse in the observed zone; SEM image (b) and TEM image (e) of h-Fe₂O₃@C@G with 0.1 g PVP dose (corresponding to 84 wt.% Fe₂O₃); SEM image (c) and TEM image (f) of h-Fe₂O₃@C@G with 0.5 g PVP dosage (corresponding to 70 wt.% Fe₂O₃); (d) TGA analysis of h-Fe₂O₃@C@G hybrids with different Fe₂O₃ contenting, which are recorded under air atmosphere at 10 °C min⁻¹.

Fig.S9 (a) XRD patterns of $CoO_x@C@G$ and h- $Co_3O_4@C@G$ hybrids; (b) XRD patterns of NiO_x@C@G and h-NiO_x@C@G hybrids; (c) TEM image of h-FeNiO_x@C@G; (d) XRD pattern and element analysis (inset) of h-FeNiO_x@C@G hybrid.

Fig.S10 (a) TGA analysis of FeNiO_x@C@G hybrid in air at the heating rate of 10 °C min⁻¹; (b) TEM image of h-FeNiO_x@C@G hybrid synthesized by air oxidation at 310 °C, in which many pores created by over oxidation of carbon could be found.

Fig.S11 Discharge/charge voltage profiles of G anode at 1A g⁻¹.

Fig.S12 Cycling stability of h-Fe₂O₃@C@G anodes with 84 wt.% Fe₂O₃ content and with 70 wt.% Fe₂O₃ content at 1 A g⁻¹.

Fig.S13 Nyquist plots of Fe₂O₃ NPs, Fe₂O₃/G and h-Fe₂O₃@C@G anodes.

Fig.S14 TEM image of cycled h-Fe₂O₃@C@G anode.

Fig.S15 (a) Discharge/charge voltage profiles of h-NiO_x@C@G anode, and (b) TEM image of h-NiO_x@C@G hybrid, in which few solid sphere or big particles could be found.

Fig.S16 Cycling stability (a) at 0.5 A g^{-1} and rate capability (b) of the h-FeNiO_x@C@G anode.

Active materials	Electrochemical properties	Reference
h-Fe ₂ O ₃ @C@G	430-1163 mAh g ⁻¹ at 0.5-15 A g ⁻¹ ,	This work
	724 mAh g ⁻¹ for 500 cycles at 5 A g ⁻¹	
3D Fe ₂ O ₃ /N-doped	420-1140 mAh g ⁻¹ at 0.2-6.0 A g ⁻¹ ,	Ref [1]
graphene	11200 mAh g ⁻¹ for 500 cycles at 0.50 A g ⁻¹	
Bubble-nanorod	491-913 mAh g ⁻¹ at 0.5-5 A g ⁻¹ ,	Ref [2]
structured Fe ₂ O ₃ /C	824 mAh g^{-1} for 300 cycles at 1 A g^{-1}	
nanofibers		
Yolk-shell FeO _x @C	370-843 mAh g ⁻¹ at 0.2-4 A g ⁻¹	Ref [3]
structure		
Iron oxide-rGO	~500-1050 mAh g ⁻¹ at 0.1-1.6 A g ⁻¹	Ref [4]
Porous iron oxide	615 mAh g ⁻¹ at 1.86 A g ⁻¹	Ref [5]
ribbons -graphene	1046 mAh g ⁻¹ for 130 cycles at 0.074 A g ⁻¹	
α -Fe ₂ O ₃ /graphene	615 mAh g ⁻¹ at 5 A g ⁻¹	Ref [6]
	1046 mAh g ⁻¹ for 130 cycles at 0.074 A g ⁻¹	
Fe ₃ O ₄ /CN _x /rGO	450-1110 mAh g ⁻¹ at 0.1-10 A g ⁻¹ ,	Ref [7]
	590 mAh g^{-1} for 500 cycles at 5 A g^{-1}	
Hollow	420-900 mAh g ⁻¹ at 0.2- 2 A g ⁻¹ ,	Ref [8]
Fe ₃ O ₄ @graphene	940 mAh g ⁻¹ for 50 cycles at 0.2 A g ⁻¹	
Fe ₃ O ₄ /CNTs	150-850 mAh g ⁻¹ at 0.15-2.4 A g ⁻¹ ,	Ref [9]
@graphene	680 mAh g ⁻¹ for 100 cycles at 0.2 A g ⁻¹	
2D G@Fe ₃ O ₄ @C	550-900 mAh g ⁻¹ at 0.2-0.5 A g ⁻¹	Ref [10]
Fe ₃ O ₄ /graphene	629-913 mAh g ⁻¹ at 0.1-2 A g ⁻¹	Ref [11]
Fe ₃ O ₄ @graphene	410-740 mAh g ⁻¹ at 0.3-1.0 A g g ⁻¹ ,	Ref [12]
	1048 mAh g ⁻¹ for 90 cycles at 0.1 A g ⁻¹	

Table S1 A comparison of the electrochemical properties between $h-Fe_2O_3@C@G$ anodes and other iron oxide-graphene electrodes

Referenece

[1] R. Wang, C. Xu, J. Sun, L. Gao, Sci. Rep. 2014, 4, 7171.

[2] J. S. Cho, Y. J. Hong, Y. C. Kang, ACS Nano 2015, 9, 4026.

- [3] H. Zhang, L. Zhou, O. Noonan, D. J. Martin, A. K. Whittaker, C. Yu, Adv. Funct. Mater. 2014, 24, 4337.
- [4] S.-H. Yu, D. E. Conte, S. Baek, D.-C. Lee, S.-K. Park, K. J. Lee, Y. Piao, Y.-E. Sung, N. Pinna, *Adv. Funct. Mater.* 2013, 23, 4293.
- [5] S. Yang, Y. Sun, L. Chen, Y. Hernandez, X. Feng, K. Müllen, Sci. Rep. 2012, 2, 427.
- [6] B. Jang, O. B. Chae, S.-K. Park, J. Ha, S. M. Oh, H. B. Na, Y. Piao, J. Mater. Chem. A 2013, 1, 15442.
- [7] S. Liu, Y. Dong, C. Zhao, Z. Zhao, C. Yu, Z. Wang, J. Qiu, Nano Energy 2015, 12, 578.
- [8] R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, J. Mater. Chem. A 2013, 1, 1794.
- [9] S. Yang, C. Cao, G. Li, Y. Sun, P. Huang, F. Wei, W. Song, *Nano Res.* 2015, *8*, 1339.
- [10] Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng, X. Feng, ACS Nano 2012, 6, 8349.
- [11] B. Zhao, Y. Zheng, F. Ye, X. Deng, X. Xu, M. Liu, Z. Shao, ACS Appl. Mater. Interfaces 2015, 7, 14446.
- [12] P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 2010, 56, 834.